BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

880 related articles for article (PubMed ID: 17482543)

  • 1. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
    Belenky P; Racette FG; Bogan KL; McClure JM; Smith JS; Brenner C
    Cell; 2007 May; 129(3):473-84. PubMed ID: 17482543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.
    Belenky P; Christensen KC; Gazzaniga F; Pletnev AA; Brenner C
    J Biol Chem; 2009 Jan; 284(1):158-164. PubMed ID: 19001417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.
    Anderson RM; Bitterman KJ; Wood JG; Medvedik O; Sinclair DA
    Nature; 2003 May; 423(6936):181-5. PubMed ID: 12736687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamins and aging: pathways to NAD+ synthesis.
    Denu JM
    Cell; 2007 May; 129(3):453-4. PubMed ID: 17482537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
    Sauve AA; Moir RD; Schramm VL; Willis IM
    Mol Cell; 2005 Feb; 17(4):595-601. PubMed ID: 15721262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.
    Lu SP; Kato M; Lin SJ
    J Biol Chem; 2009 Jun; 284(25):17110-17119. PubMed ID: 19416965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assimilation of NAD(+) precursors in Candida glabrata.
    Ma B; Pan SJ; Zupancic ML; Cormack BP
    Mol Microbiol; 2007 Oct; 66(1):14-25. PubMed ID: 17725566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast.
    Tsuchiya M; Dang N; Kerr EO; Hu D; Steffen KK; Oakes JA; Kennedy BK; Kaeberlein M
    Aging Cell; 2006 Dec; 5(6):505-14. PubMed ID: 17129213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.
    Gallo CM; Smith DL; Smith JS
    Mol Cell Biol; 2004 Feb; 24(3):1301-12. PubMed ID: 14729974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
    McClure JM; Wierman MB; Maqani N; Smith JS
    J Biol Chem; 2012 Jun; 287(25):20957-66. PubMed ID: 22539348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pnc1p-mediated nicotinamide clearance modifies the epigenetic properties of rDNA silencing in Saccharomyces cerevisiae.
    McClure JM; Gallo CM; Smith DL; Matecic M; Hontz RD; Buck SW; Racette FG; Smith JS
    Genetics; 2008 Oct; 180(2):797-810. PubMed ID: 18780747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of protein copy number in yeast: the NAD+ metabolome.
    Mei SC; Brenner C
    PLoS One; 2014; 9(9):e106496. PubMed ID: 25188219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
    Bitterman KJ; Anderson RM; Cohen HY; Latorre-Esteves M; Sinclair DA
    J Biol Chem; 2002 Nov; 277(47):45099-107. PubMed ID: 12297502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
    Avalos JL; Bever KM; Wolberger C
    Mol Cell; 2005 Mar; 17(6):855-68. PubMed ID: 15780941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.
    Fletcher RS; Ratajczak J; Doig CL; Oakey LA; Callingham R; Da Silva Xavier G; Garten A; Elhassan YS; Redpath P; Migaud ME; Philp A; Brenner C; Canto C; Lavery GG
    Mol Metab; 2017 Aug; 6(8):819-832. PubMed ID: 28752046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide riboside kinase structures reveal new pathways to NAD+.
    Tempel W; Rabeh WM; Bogan KL; Belenky P; Wojcik M; Seidle HF; Nedyalkova L; Yang T; Sauve AA; Park HW; Brenner C
    PLoS Biol; 2007 Oct; 5(10):e263. PubMed ID: 17914902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longevity research. Single signal unites treatments that prolong life.
    Strauss E
    Science; 2003 May; 300(5621):881-3. PubMed ID: 12738822
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
    Kato M; Lin SJ
    DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.
    Bogan KL; Evans C; Belenky P; Song P; Burant CF; Kennedy R; Brenner C
    J Biol Chem; 2009 Dec; 284(50):34861-9. PubMed ID: 19846558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.