These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 17482809)
21. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Brown S; Christensen B; Lombi E; McLaughlin M; McGrath S; Colpaert J; Vangronsveld J Environ Pollut; 2005 Nov; 138(1):34-45. PubMed ID: 15950344 [TBL] [Abstract][Full Text] [Related]
22. From industrial sites to environmental applications with Cupriavidus metallidurans. Diels L; Van Roy S; Taghavi S; Van Houdt R Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590 [TBL] [Abstract][Full Text] [Related]
23. Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties. Tejada M; Gonzalez JL; Hernandez MT; Garcia C Bioresour Technol; 2008 May; 99(8):2872-80. PubMed ID: 17662598 [TBL] [Abstract][Full Text] [Related]
24. Remediation of metal-contaminated soil and sludge using biosurfactant technology. Maier RM; Neilson JW; Artiola JF; Jordan FL; Glenn EP; Descher SM Int J Occup Med Environ Health; 2001; 14(3):241-8. PubMed ID: 11764852 [TBL] [Abstract][Full Text] [Related]
25. Studies on land application of sewage sludge and its limiting factors. Wang X; Chen T; Ge Y; Jia Y J Hazard Mater; 2008 Dec; 160(2-3):554-8. PubMed ID: 18456400 [TBL] [Abstract][Full Text] [Related]
26. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Wu Q; Wang S; Thangavel P; Li Q; Zheng H; Bai J; Qiu R Int J Phytoremediation; 2011 Sep; 13(8):788-804. PubMed ID: 21972519 [TBL] [Abstract][Full Text] [Related]
27. Metal availability and uptake by sorghum plants grown in soils amended with sludge from different treatments. Mendoza J; Garrido T; Castillo G; San Martin N Chemosphere; 2006 Dec; 65(11):2304-12. PubMed ID: 16797672 [TBL] [Abstract][Full Text] [Related]
28. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility. Alburquerque JA; de la Fuente C; Bernal MP J Environ Manage; 2011 Mar; 92(3):733-41. PubMed ID: 21035939 [TBL] [Abstract][Full Text] [Related]
29. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Park JH; Lamb D; Paneerselvam P; Choppala G; Bolan N; Chung JW J Hazard Mater; 2011 Jan; 185(2-3):549-74. PubMed ID: 20974519 [TBL] [Abstract][Full Text] [Related]
30. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Gupta AK; Sinha S Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314 [TBL] [Abstract][Full Text] [Related]
31. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Ryser P; Sauder WR Environ Pollut; 2006 Mar; 140(1):52-61. PubMed ID: 16185797 [TBL] [Abstract][Full Text] [Related]
32. Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes. Adesodun JK; Mbagwu JS Bioresour Technol; 2008 May; 99(8):3195-204. PubMed ID: 17616460 [TBL] [Abstract][Full Text] [Related]
33. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Clemente R; Escolar A; Bernal MP Bioresour Technol; 2006 Oct; 97(15):1894-901. PubMed ID: 16223584 [TBL] [Abstract][Full Text] [Related]
34. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Odlare M; Pell M; Svensson K Waste Manag; 2008; 28(7):1246-53. PubMed ID: 17697770 [TBL] [Abstract][Full Text] [Related]
35. Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay. Maenpaa KA; Kukkonen JV; Lydy MJ Arch Environ Contam Toxicol; 2002 Nov; 43(4):389-98. PubMed ID: 12399909 [TBL] [Abstract][Full Text] [Related]
36. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
37. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
38. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related]
39. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Pedron F; Petruzzelli G; Barbafieri M; Tassi E Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142 [TBL] [Abstract][Full Text] [Related]
40. Changes in microbial biomass parameters of a heavy metal-contaminated calcareous soil during a field remediation experiment. Clemente R; de la Fuente C; Moral R; Bernal MP J Environ Qual; 2007; 36(4):1137-44. PubMed ID: 17596622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]