These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 17482811)
1. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Korkut S; Akgül M; Dündar T Bioresour Technol; 2008 Apr; 99(6):1861-8. PubMed ID: 17482811 [TBL] [Abstract][Full Text] [Related]
2. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Korkut S; Kök MS; Korkut DS; Gürleyen T Bioresour Technol; 2008 Apr; 99(6):1538-43. PubMed ID: 17548192 [TBL] [Abstract][Full Text] [Related]
3. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Gündüz G; Korkut S; Korkut DS Bioresour Technol; 2008 May; 99(7):2275-80. PubMed ID: 17604619 [TBL] [Abstract][Full Text] [Related]
4. Bending properties of wood treated with a new organic wood preservative system. Barnes HM; Lindsey GB Bioresour Technol; 2009 Jan; 100(2):778-81. PubMed ID: 18707874 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Yildiz UC; Yildiz S; Gezer ED Bioresour Technol; 2005 Jun; 96(9):1003-11. PubMed ID: 15668197 [TBL] [Abstract][Full Text] [Related]
6. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain. Fernandez I; González-Prieto SJ; Cabaneiro A Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761 [TBL] [Abstract][Full Text] [Related]
7. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Korkut DS; Guller B Bioresour Technol; 2008 May; 99(8):2846-51. PubMed ID: 17698357 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. Kol HS J Environ Biol; 2010 Nov; 31(6):1007-11. PubMed ID: 21506490 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Buyuksari U; Ayrilmis N; Avci E; Koc E Bioresour Technol; 2010 Jan; 101(1):255-9. PubMed ID: 19733063 [TBL] [Abstract][Full Text] [Related]
10. The potential for using the needle litter of Scotch pine (Pinus sylvestris L.) as a raw material for particleboard manufacturing. Nemli G; Yildiz S; Derya Gezer E Bioresour Technol; 2008 Sep; 99(14):6054-8. PubMed ID: 18242082 [TBL] [Abstract][Full Text] [Related]
11. Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Piernik M; Woźniak M; Pinkowski G; Szentner K; Ratajczak I; Krauss A Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955359 [TBL] [Abstract][Full Text] [Related]
12. Color as an Indicator of Properties in Thermally Modified Scots Pine Sapwood. Piernik M; Woźniak M; Pinkowski G; Szentner K; Ratajczak I; Krauss A Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013912 [TBL] [Abstract][Full Text] [Related]
13. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments. Yahata Y; Yoneyama T; Hayashi Y; Ebihara A; Doi H; Hanawa T; Suda H Int Endod J; 2009 Jul; 42(7):621-6. PubMed ID: 19467049 [TBL] [Abstract][Full Text] [Related]
14. A high-temperature thermal treatment of wood using a multiscale computational model: application to wood poles. Younsi R; Kocaefe D; Poncsak S; Kocaefe Y; Gastonguay L Bioresour Technol; 2010 Jun; 101(12):4630-8. PubMed ID: 20171094 [TBL] [Abstract][Full Text] [Related]
15. Elemental analyses of pine bark and wood in an environmental study. Saarela KE; Harju L; Rajander J; Lill JO; Heselius SJ; Lindroos A; Mattsson K Sci Total Environ; 2005 May; 343(1-3):231-41. PubMed ID: 15862848 [TBL] [Abstract][Full Text] [Related]
16. Reinforced polypropylene composites: effects of chemical compositions and particle size. Ashori A; Nourbakhsh A Bioresour Technol; 2010 Apr; 101(7):2515-9. PubMed ID: 19948401 [TBL] [Abstract][Full Text] [Related]
17. Microfibril angle in wood of Scots pine trees (Pinus sylvestris) after irradiation from the Chernobyl nuclear reactor accident. Tulik M; Rusin A Environ Pollut; 2005 Mar; 134(2):195-9. PubMed ID: 15589646 [TBL] [Abstract][Full Text] [Related]
18. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968 [TBL] [Abstract][Full Text] [Related]
19. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Eilmann B; Zweifel R; Buchmann N; Fonti P; Rigling A Tree Physiol; 2009 Aug; 29(8):1011-20. PubMed ID: 19483185 [TBL] [Abstract][Full Text] [Related]
20. Effect of thermal treatments on technological properties of wood from two Eucalyptus species. Cademartori PH; Missio AL; Mattos BD; Gatto DA An Acad Bras Cienc; 2015 Mar; 87(1):471-81. PubMed ID: 25806991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]