BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 17482828)

  • 1. Leaching of technologically enhanced naturally occurring radioactive materials.
    Chau ND; Chruściel E
    Appl Radiat Isot; 2007 Aug; 65(8):968-74. PubMed ID: 17482828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top soil radioactivity assessment in a high natural radiation background area: the case of Vinaninkarena, Antsirabe-Madagascar.
    Rabesiranana N; Rasolonirina M; Terina F; Solonjara AF; Andriambololona R
    Appl Radiat Isot; 2008 Nov; 66(11):1619-22. PubMed ID: 18502647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioactivity of the Bega sediment-case study of a contaminated canal.
    Bikit I; Varga E; Conkić Lj; Slivka J; Mrda D; Curcić S; Zikić-Todorović N; Vesković M
    Appl Radiat Isot; 2005 Aug; 63(2):261-6. PubMed ID: 15946851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of radiological significance of naturally occurring radionuclides in soil and rock matrices around Kakrapar environment.
    Patra AK; Jaison TJ; Baburajan A; Hegde AG
    Radiat Prot Dosimetry; 2008; 131(4):487-94. PubMed ID: 18658174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Zirovski vrh, Slovenia.
    Strok M; Smodis B
    J Environ Radioact; 2010 Jan; 101(1):22-8. PubMed ID: 19762128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NORM impacts on the environment: an approach to complete environmental risk assessment using the example of areas contaminated due to mining activity.
    Michalik B
    Appl Radiat Isot; 2008 Nov; 66(11):1661-5. PubMed ID: 18502654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the effect of radioactive wastes at the Ak-Tyuz deposit on radionuclide and elemental composition of water objects of Kichi-Kemin River.
    Solodukhin V; Poznyak V
    Radiat Prot Dosimetry; 2015 Jun; 164(4):552-5. PubMed ID: 25971344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative radiological risks derived from different TENORM wastes in Malaysia.
    Ismail B; Teng IL; Muhammad Samudi Y
    Radiat Prot Dosimetry; 2011 Nov; 147(4):600-7. PubMed ID: 21266370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).
    Rich AL; Crosby EC
    New Solut; 2013; 23(1):117-35. PubMed ID: 23552651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural radionuclide concentrations in processed materials from Thai mineral industries.
    Chanyotha S; Kranrod C; Chankow N; Kritsananuwat R; Sriploy P; Pangza K
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):71-5. PubMed ID: 22908347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radioactivity in the environment around past radium and uranium mining sites of Portugal.
    Carvalho FP; Madruga MJ; Reis MC; Alves JG; Oliveira JM; Gouveia J; Silva L
    J Environ Radioact; 2007; 96(1-3):39-46. PubMed ID: 17433852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland.
    Kozak K; Mazur J; Vaupotič J; Grządziel D; Kobal I; Omran KM
    Isotopes Environ Health Stud; 2013 Jun; 49(2):274-82. PubMed ID: 23639059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.
    Allard DJ
    Health Phys; 2015 Feb; 108(2):178. PubMed ID: 25551500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technologically enhanced naturally occurring radioactive materials.
    Vearrier D; Curtis JA; Greenberg MI
    Clin Toxicol (Phila); 2009 May; 47(5):393-406. PubMed ID: 19492930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiological hazards of TENORM in the wasted petroleum pipes.
    Abo-Elmagd M; Soliman HA; Salman KhA; El-Masry NM
    J Environ Radioact; 2010 Jan; 101(1):51-4. PubMed ID: 19782444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radionuclides from past uranium mining in rivers of Portugal.
    Carvalho FP; Oliveira JM; Lopes I; Batista A
    J Environ Radioact; 2007; 98(3):298-314. PubMed ID: 17624644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain.
    Mas JL; San Miguel EG; Bolívar JP; Vaca F; Pérez-Moreno JP
    Sci Total Environ; 2006 Jul; 364(1-3):55-66. PubMed ID: 16343599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of environmental radioactivity at uranium mining, processing and tailings management facility at Jaduguda, India.
    Tripathi RM; Sahoo SK; Jha VN; Khan AH; Puranik VD
    Appl Radiat Isot; 2008 Nov; 66(11):1666-70. PubMed ID: 18653352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Public exposure to hazards associated with natural radioactivity in open-pit mining in Ghana.
    Darko EO; Faanu A; Awudu AR; Emi-Reynolds G; Yeboah J; Oppon OC; Akaho EH
    Radiat Prot Dosimetry; 2010 Jan; 138(1):45-51. PubMed ID: 19767601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural radionuclides and toxic elements in transboundary rivers of Kazakhstan.
    Solodukhin V; Poznyak V; Kabirova G; Stepanov V; Ryazanova L; Lennik S; Liventsova A; Bychenko A; Zheltov D
    Radiat Prot Dosimetry; 2015 Jun; 164(4):542-7. PubMed ID: 25971346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.