These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 17483278)
21. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Leys NM; Ryngaert A; Bastiaens L; Verstraete W; Top EM; Springael D Appl Environ Microbiol; 2004 Apr; 70(4):1944-55. PubMed ID: 15066784 [TBL] [Abstract][Full Text] [Related]
22. Use of the frc gene as a molecular marker to characterize oxalate-oxidizing bacterial abundance and diversity structure in soil. Khammar N; Martin G; Ferro K; Job D; Aragno M; Verrecchia E J Microbiol Methods; 2009 Feb; 76(2):120-7. PubMed ID: 18930770 [TBL] [Abstract][Full Text] [Related]
23. Detection and quantification of Dehalogenimonas and "Dehalococcoides" populations via PCR-based protocols targeting 16S rRNA genes. Yan J; Rash BA; Rainey FA; Moe WM Appl Environ Microbiol; 2009 Dec; 75(23):7560-4. PubMed ID: 19820163 [TBL] [Abstract][Full Text] [Related]
25. Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Zhang DC; Redzic M; Schinner F; Margesin R Int J Syst Evol Microbiol; 2011 Sep; 61(Pt 9):2186-2190. PubMed ID: 20935085 [TBL] [Abstract][Full Text] [Related]
26. Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Singh BK; Nazaries L; Munro S; Anderson IC; Campbell CD Appl Environ Microbiol; 2006 Nov; 72(11):7278-85. PubMed ID: 16936053 [TBL] [Abstract][Full Text] [Related]
28. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Herrick JB; Madsen EL; Batt CA; Ghiorse WC Appl Environ Microbiol; 1993 Mar; 59(3):687-94. PubMed ID: 7683182 [TBL] [Abstract][Full Text] [Related]
29. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. Chim Chan O; Casper P; Sha LQ; Feng ZL; Fu Y; Yang XD; Ulrich A; Zou XM FEMS Microbiol Ecol; 2008 Jun; 64(3):449-58. PubMed ID: 18430004 [TBL] [Abstract][Full Text] [Related]
30. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
31. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Colin Y; Nicolitch O; Turpault MP; Uroz S Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003192 [TBL] [Abstract][Full Text] [Related]
32. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil. Lynn TM; Liu Q; Hu Y; Yuan H; Wu X; Khai AA; Wu J; Ge T Arch Microbiol; 2017 Jul; 199(5):711-721. PubMed ID: 28233042 [TBL] [Abstract][Full Text] [Related]
33. Soil microbial communities associated with Douglas-fir and red alder stands at high- and low-productivity forest sites in Oregon, USA. Yarwood SA; Bottomley PJ; Myrold DD Microb Ecol; 2010 Oct; 60(3):606-17. PubMed ID: 20449582 [TBL] [Abstract][Full Text] [Related]
34. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Cébron A; Norini MP; Beguiristain T; Leyval C J Microbiol Methods; 2008 May; 73(2):148-59. PubMed ID: 18329116 [TBL] [Abstract][Full Text] [Related]
35. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Hackl E; Zechmeister-Boltenstern S; Bodrossy L; Sessitsch A Appl Environ Microbiol; 2004 Sep; 70(9):5057-65. PubMed ID: 15345382 [TBL] [Abstract][Full Text] [Related]
36. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Ntougias S; Zervakis GI; Kavroulakis N; Ehaliotis C; Papadopoulou KK Syst Appl Microbiol; 2004 Nov; 27(6):746-54. PubMed ID: 15612633 [TBL] [Abstract][Full Text] [Related]
37. Rice to vegetables: short- versus long-term impact of land-use change on the indigenous soil microbial community. Sun B; Dong ZX; Zhang XX; Li Y; Cao H; Cui ZL Microb Ecol; 2011 Aug; 62(2):474-85. PubMed ID: 21298263 [TBL] [Abstract][Full Text] [Related]
38. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. Edel-Hermann V; Dreumont C; Pérez-Piqueres A; Steinberg C FEMS Microbiol Ecol; 2004 Mar; 47(3):397-404. PubMed ID: 19712328 [TBL] [Abstract][Full Text] [Related]
39. Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera. Kyselková M; Kopecký J; Felföldi T; Cermák L; Omelka M; Grundmann GL; Moënne-Loccoz Y; Ságová-Marecková M Antonie Van Leeuwenhoek; 2008 Oct; 94(3):439-53. PubMed ID: 18600470 [TBL] [Abstract][Full Text] [Related]
40. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Henry S; Bru D; Stres B; Hallet S; Philippot L Appl Environ Microbiol; 2006 Aug; 72(8):5181-9. PubMed ID: 16885263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]