These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 17483351)
1. Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Xu J; Peng H; Chen Q; Liu Y; Dong Z; Zhang JT Cancer Res; 2007 May; 67(9):4373-81. PubMed ID: 17483351 [TBL] [Abstract][Full Text] [Related]
2. Different roles of TM5, TM6, and ECL3 in the oligomerization and function of human ABCG2. Mo W; Qi J; Zhang JT Biochemistry; 2012 May; 51(17):3634-41. PubMed ID: 22497316 [TBL] [Abstract][Full Text] [Related]
3. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2. Henriksen U; Gether U; Litman T J Cell Sci; 2005 Apr; 118(Pt 7):1417-26. PubMed ID: 15769853 [TBL] [Abstract][Full Text] [Related]
4. Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. Xu J; Liu Y; Yang Y; Bates S; Zhang JT J Biol Chem; 2004 May; 279(19):19781-9. PubMed ID: 15001581 [TBL] [Abstract][Full Text] [Related]
5. Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Bhatia A; Schäfer HJ; Hrycyna CA Biochemistry; 2005 Aug; 44(32):10893-904. PubMed ID: 16086592 [TBL] [Abstract][Full Text] [Related]
6. Identification of cysteine residues critically involved in homodimer formation and protein expression of human ATP-binding cassette transporter ABCG2: a new approach using the flp recombinase system. Wakabayashi K; Nakagawa H; Adachi T; Kii I; Kobatake E; Kudo A; Ishikawa T J Exp Ther Oncol; 2006; 5(3):205-22. PubMed ID: 16528971 [TBL] [Abstract][Full Text] [Related]
7. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. Ishikawa T; Nakagawa H J Exp Ther Oncol; 2009; 8(1):5-24. PubMed ID: 19827267 [TBL] [Abstract][Full Text] [Related]
8. Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway. Pick A; Wiese M ChemMedChem; 2012 Apr; 7(4):650-62. PubMed ID: 22354538 [TBL] [Abstract][Full Text] [Related]
9. Role of the breast cancer resistance protein (ABCG2) in drug transport. Mao Q; Unadkat JD AAPS J; 2005 May; 7(1):E118-33. PubMed ID: 16146333 [TBL] [Abstract][Full Text] [Related]
10. Allocrite Sensing and Binding by the Breast Cancer Resistance Protein (ABCG2) and P-Glycoprotein (ABCB1). Xu Y; Egido E; Li-Blatter X; Müller R; Merino G; Bernèche S; Seelig A Biochemistry; 2015 Oct; 54(40):6195-206. PubMed ID: 26381710 [TBL] [Abstract][Full Text] [Related]
11. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Hu J; Zhang X; Wang F; Wang X; Yang K; Xu M; To KK; Li Q; Fu L Oncotarget; 2015 Dec; 6(42):44643-59. PubMed ID: 26556876 [TBL] [Abstract][Full Text] [Related]
12. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Shi Z; Peng XX; Kim IW; Shukla S; Si QS; Robey RW; Bates SE; Shen T; Ashby CR; Fu LW; Ambudkar SV; Chen ZS Cancer Res; 2007 Nov; 67(22):11012-20. PubMed ID: 18006847 [TBL] [Abstract][Full Text] [Related]
13. Vatalanib sensitizes ABCB1 and ABCG2-overexpressing multidrug resistant colon cancer cells to chemotherapy under hypoxia. To KK; Poon DC; Wei Y; Wang F; Lin G; Fu LW Biochem Pharmacol; 2015 Sep; 97(1):27-37. PubMed ID: 26206183 [TBL] [Abstract][Full Text] [Related]
14. Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Dai CL; Liang YJ; Wang YS; Tiwari AK; Yan YY; Wang F; Chen ZS; Tong XZ; Fu LW Cancer Lett; 2009 Jun; 279(1):74-83. PubMed ID: 19232821 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Meyer zu Schwabedissen HE; Kroemer HK Handb Exp Pharmacol; 2011; (201):325-71. PubMed ID: 21103975 [TBL] [Abstract][Full Text] [Related]
16. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. Gozzi GJ; Bouaziz Z; Winter E; Daflon-Yunes N; Honorat M; Guragossian N; Marminon C; Valdameri G; Bollacke A; Guillon J; Pinaud N; Marchivie M; Cadena SM; Jose J; Le Borgne M; Di Pietro A Drug Des Devel Ther; 2015; 9():3481-95. PubMed ID: 26170632 [TBL] [Abstract][Full Text] [Related]
17. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Dezi M; Fribourg PF; Di Cicco A; Arnaud O; Marco S; Falson P; Di Pietro A; Lévy D Biochim Biophys Acta; 2010 Nov; 1798(11):2094-101. PubMed ID: 20691149 [TBL] [Abstract][Full Text] [Related]
18. Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport. Hou YX; Li CZ; Palaniyandi K; Magtibay PM; Homolya L; Sarkadi B; Chang XB Biochemistry; 2009 Sep; 48(38):9122-31. PubMed ID: 19691360 [TBL] [Abstract][Full Text] [Related]
19. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. Yoshikawa M; Ikegami Y; Sano K; Yoshida H; Mitomo H; Sawada S; Ishikawa T J Exp Ther Oncol; 2004 Apr; 4(1):25-35. PubMed ID: 15255290 [TBL] [Abstract][Full Text] [Related]
20. N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Diop NK; Hrycyna CA Biochemistry; 2005 Apr; 44(14):5420-9. PubMed ID: 15807535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]