BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17483453)

  • 21. Vulnerability of maize, millet, and rice yields to growing season precipitation and socio-economic proxies in Cameroon.
    Epule TE; Chehbouni A; Dhiba D; Etongo D; Driouech F; Brouziyne Y; Peng C
    PLoS One; 2021; 16(6):e0252335. PubMed ID: 34106980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergence of robust precipitation changes across crop production areas in the 21st century.
    Rojas M; Lambert F; Ramirez-Villegas J; Challinor AJ
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6673-6678. PubMed ID: 30858318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rice yields decline with higher night temperature from global warming.
    Peng S; Huang J; Sheehy JE; Laza RC; Visperas RM; Zhong X; Centeno GS; Khush GS; Cassman KG
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):9971-5. PubMed ID: 15226500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Changes of China agricultural climate resources under the background of climate change. V. Change characteristics of agricultural climate resources in Ningxia].
    Yuan HY; Zhang XY; Xu HJ; Yang XG
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1247-54. PubMed ID: 21812302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate drives variability and joint variability of global crop yields.
    Najafi E; Pal I; Khanbilvardi R
    Sci Total Environ; 2019 Apr; 662():361-372. PubMed ID: 30690370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Changes of China agricultural climate resources under the background of climate change. VII. Change characteristics of agricultural climate resources in arid and semi-arid region of Tibet Plateau].
    Xu HJ; Yang XG; Wang WF; Xu C
    Ying Yong Sheng Tai Xue Bao; 2011 Jul; 22(7):1817-24. PubMed ID: 22007460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bayesian framework to unravel food, groundwater, and climate linkages: A case study from Louisiana.
    Singh NK; Bhattacharya R; Borrok DM
    PLoS One; 2020; 15(7):e0236757. PubMed ID: 32730317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.
    Weller S; Janz B; Jörg L; Kraus D; Racela HS; Wassmann R; Butterbach-Bahl K; Kiese R
    Glob Chang Biol; 2016 Jan; 22(1):432-48. PubMed ID: 26386203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.
    Delerce S; Dorado H; Grillon A; Rebolledo MC; Prager SD; Patiño VH; Garcés Varón G; Jiménez D
    PLoS One; 2016; 11(8):e0161620. PubMed ID: 27560980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change in Bangladesh: Temperature and rainfall climatology of Bangladesh for 1949-2013 and its implication on rice yield.
    Alam E; Hridoy AE; Tusher SMSH; Islam ARMT; Islam MK
    PLoS One; 2023; 18(10):e0292668. PubMed ID: 37824463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.
    Li H; Qin L; He H
    J Sci Food Agric; 2018 Jun; 98(8):3001-3013. PubMed ID: 29193107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impacts of Extreme Climate Events on Future Rice Yields in Global Major Rice-Producing Regions.
    Zhao W; Chou J; Li J; Xu Y; Li Y; Hao Y
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.
    Dixit PN; Telleria R
    Sci Total Environ; 2015 Apr; 511():562-75. PubMed ID: 25590537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Climatic suitability of single cropping rice planting region in China].
    Duan JQ; Zhou GS
    Ying Yong Sheng Tai Xue Bao; 2012 Feb; 23(2):426-32. PubMed ID: 22586968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India.
    Auffhammer M; Ramanathan V; Vincent JR
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19668-72. PubMed ID: 17158795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection.
    Zhang H; Zhou G; Liu L; Wang B; Xiao D; He L
    Sci Total Environ; 2019 May; 666():126-138. PubMed ID: 30798223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biophysical impacts of climate-smart agriculture in the Midwest United States.
    Bagley JE; Miller J; Bernacchi CJ
    Plant Cell Environ; 2015 Sep; 38(9):1913-30. PubMed ID: 25393245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of climate variation on agro-pastoral production in Africa.
    Stige LC; Stave J; Chan KS; Ciannelli L; Pettorelli N; Glantz M; Herren HR; Stenseth NC
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3049-53. PubMed ID: 16492727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.