BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17483544)

  • 1. Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation.
    Brusselmans K; Timmermans L; Van de Sande T; Van Veldhoven PP; Guan G; Shechter I; Claessens F; Verhoeven G; Swinnen JV
    J Biol Chem; 2007 Jun; 282(26):18777-85. PubMed ID: 17483544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase.
    Wentzinger LF; Bach TJ; Hartmann MA
    Plant Physiol; 2002 Sep; 130(1):334-46. PubMed ID: 12226513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statins and the squalene synthase inhibitor zaragozic acid stimulate the non-amyloidogenic pathway of amyloid-beta protein precursor processing by suppression of cholesterol synthesis.
    Kojro E; Füger P; Prinzen C; Kanarek AM; Rat D; Endres K; Fahrenholz F; Postina R
    J Alzheimers Dis; 2010; 20(4):1215-31. PubMed ID: 20413873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of squalene synthase but not squalene cyclase prevents mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis at a posttranscriptional level.
    Peffley DM; Gayen AK
    Arch Biochem Biophys; 1997 Jan; 337(2):251-60. PubMed ID: 9016820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis.
    Yang YF; Jan YH; Liu YP; Yang CJ; Su CY; Chang YC; Lai TC; Chiou J; Tsai HY; Lu J; Shen CN; Shew JY; Lu PJ; Lin YF; Huang MS; Hsiao M
    Am J Respir Crit Care Med; 2014 Sep; 190(6):675-87. PubMed ID: 25152164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squalene synthase: structure and regulation.
    Tansey TR; Shechter I
    Prog Nucleic Acid Res Mol Biol; 2001; 65():157-95. PubMed ID: 11008488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS.
    Henneman L; van Cruchten AG; Kulik W; Waterham HR
    Biochim Biophys Acta; 2011 Apr; 1811(4):227-33. PubMed ID: 21237288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and regulation of mammalian squalene synthase.
    Tansey TR; Shechter I
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):49-62. PubMed ID: 11111077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory responses to inhibition of hepatic squalene synthase.
    Lopez D; Chambers CM; Keller RK; Ness GC
    Arch Biochem Biophys; 1998 Mar; 351(2):159-66. PubMed ID: 9514656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembrane protease SPP defines a cholesterol-regulated abundance control of the mevalonate pathway enzyme squalene synthase.
    Avci D; Heidasch R; Costa M; Lüchtenborg C; Kale D; Brügger B; Lemberg MK
    J Biol Chem; 2024 Feb; 300(2):105644. PubMed ID: 38218226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation.
    Lindsey S; Harwood HJ
    J Biol Chem; 1995 Apr; 270(16):9083-96. PubMed ID: 7721822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HMG-CoA reductase regulation: use of structurally diverse first half-reaction squalene synthetase inhibitors to characterize the site of mevalonate-derived nonsterol regulator production in cultured IM-9 cells.
    Petras SF; Lindsey S; Harwood HJ
    J Lipid Res; 1999 Jan; 40(1):24-38. PubMed ID: 9869647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspergillus flavus squalene synthase as an antifungal target: Expression, activity, and inhibition.
    Song J; Shang N; Baig N; Yao J; Shin C; Kim BK; Li Q; Malwal SR; Oldfield E; Feng X; Guo RT
    Biochem Biophys Res Commun; 2019 May; 512(3):517-523. PubMed ID: 30904161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid.
    Haeuptle MA; Welti M; Troxler H; Hülsmeier AJ; Imbach T; Hennet T
    J Biol Chem; 2011 Feb; 286(8):6085-91. PubMed ID: 21183681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthetic enzymes, LDL receptor, and cholesterol 7 alpha hydroxylase.
    Ness GC; Zhao Z; Keller RK
    Arch Biochem Biophys; 1994 Jun; 311(2):277-85. PubMed ID: 7911291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of farnesyl diphosphate in tobacco BY-2 cells treated with squalestatin.
    Hartmann MA; Wentzinger L; Hemmerlin A; Bach TJ
    Biochem Soc Trans; 2000 Dec; 28(6):794-6. PubMed ID: 11171211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering and molecular characterization of yeast strain expressing hybrid human-yeast squalene synthase as a tool for anti-cholesterol drug assessment.
    Warchol I; Gora M; Wysocka-Kapcinska M; Komaszylo J; Swiezewska E; Sojka M; Danikiewicz W; Plochocka D; Maciejak A; Tulacz D; Leszczynska A; Kapur S; Burzynska B
    J Appl Microbiol; 2016 Apr; 120(4):877-88. PubMed ID: 26757023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency.
    Schneiders MS; Houten SM; Turkenburg M; Wanders RJ; Waterham HR
    Arthritis Rheum; 2006 Jul; 54(7):2306-13. PubMed ID: 16802371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of fatty acid synthase expression by cholesterol in human cultured cells.
    Kawabe Y; Sato R; Matsumoto A; Honda M; Wada Y; Yazaki Y; Endo A; Takano T; Itakura H; Kodama T
    Biochem Biophys Res Commun; 1996 Feb; 219(2):515-20. PubMed ID: 8605019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative Regulation of Human Hepatic Constitutive Androstane Receptor by Cholesterol Synthesis Inhibition: Role of Sterol Regulatory Element Binding Proteins.
    Cuko L; Duniec-Dmuchowski Z; Rondini EA; Pant A; Fallon JK; Wilson EM; Peraino NJ; Westrick JA; Smith PC; Kocarek TA
    Drug Metab Dispos; 2021 Aug; 49(8):706-717. PubMed ID: 34011532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.