These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 17483804)
1. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. Ahn TS; Ka JO; Lee GH; Song HG J Microbiol; 2007 Apr; 45(2):171-4. PubMed ID: 17483804 [TBL] [Abstract][Full Text] [Related]
2. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. Ahn TS; Ka JO; Lee GH; Song HG J Microbiol Biotechnol; 2007 Jan; 17(1):52-7. PubMed ID: 18051353 [TBL] [Abstract][Full Text] [Related]
3. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
4. Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. Barriuso J; Ramos Solano B; Santamaría C; Daza A; Gutiérrez Mañero FJ J Appl Microbiol; 2008 Nov; 105(5):1298-309. PubMed ID: 18713291 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of plant growth promotion by rhizobacteria. Gupta A; Gopal M; Tilak KV Indian J Exp Biol; 2000 Sep; 38(9):856-62. PubMed ID: 12561941 [TBL] [Abstract][Full Text] [Related]
6. Associative diazotrophs of pearl millet (Pennisetum glaucum) from semi arid region--isolation and characterization. Tiwari M; Paroda S; Dadarwal KR Indian J Exp Biol; 2003 Apr; 41(4):341-5. PubMed ID: 15255644 [TBL] [Abstract][Full Text] [Related]
7. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Dutta S; Podile AR Crit Rev Microbiol; 2010 Aug; 36(3):232-44. PubMed ID: 20635858 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893 [TBL] [Abstract][Full Text] [Related]
9. Systemic induction of monoterpene biosynthesis in Origanumxmajoricum by soil bacteria. Banchio E; Bogino PC; Santoro M; Torres L; Zygadlo J; Giordano W J Agric Food Chem; 2010 Jan; 58(1):650-4. PubMed ID: 20000572 [TBL] [Abstract][Full Text] [Related]
10. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Rajkumar M; Freitas H Bioresour Technol; 2008 Jun; 99(9):3491-8. PubMed ID: 17826991 [TBL] [Abstract][Full Text] [Related]
11. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. Castro-Sowinski S; Herschkovitz Y; Okon Y; Jurkevitch E FEMS Microbiol Lett; 2007 Nov; 276(1):1-11. PubMed ID: 17711454 [TBL] [Abstract][Full Text] [Related]
12. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112 [TBL] [Abstract][Full Text] [Related]
13. Activities and survival of endophytic bacteria in white clover (Trifolium repens L.). Burch G; Sarathchandra U Can J Microbiol; 2006 Sep; 52(9):848-56. PubMed ID: 17110977 [TBL] [Abstract][Full Text] [Related]
14. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Liddycoat SM; Greenberg BM; Wolyn DJ Can J Microbiol; 2009 Apr; 55(4):388-94. PubMed ID: 19396238 [TBL] [Abstract][Full Text] [Related]
15. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil. Kumar KV; Patra DD Int J Phytoremediation; 2013; 15(8):743-55. PubMed ID: 23819272 [TBL] [Abstract][Full Text] [Related]
16. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Ma Y; Rajkumar M; Freitas H J Hazard Mater; 2009 Jul; 166(2-3):1154-61. PubMed ID: 19147283 [TBL] [Abstract][Full Text] [Related]
17. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Liu H; Zhang J; Christie P; Zhang F Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566 [TBL] [Abstract][Full Text] [Related]
18. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field. Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144 [TBL] [Abstract][Full Text] [Related]
19. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Mantelin S; Touraine B J Exp Bot; 2004 Jan; 55(394):27-34. PubMed ID: 14623902 [TBL] [Abstract][Full Text] [Related]
20. Monitoring of soil bacterial community and some inoculated bacteria after prescribed fire in microcosm. Song HG; Kim OS; Yoo JJ; Jeon SO; Hong SH; Lee DH; Ahn TS J Microbiol; 2004 Dec; 42(4):285-91. PubMed ID: 15650684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]