BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17483889)

  • 1. Rapid cooling through the glass transition transiently increases ductility of PGA/PLLA copolymers: a proposed mechanism and implications for devices.
    Pietrzak WS
    J Mater Sci Mater Med; 2007 Sep; 18(9):1753-63. PubMed ID: 17483889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of heat adaptation of bioabsorbable craniofacial meshes and plates.
    Pietrzak WS; Eppley BL
    J Craniofac Surg; 2007 May; 18(3):540-5. PubMed ID: 17538315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of simulated intraoperative heating and shaping on mechanical properties of a bioabsorbable fracture plate material.
    Pietrzak WS; Sarver DR; Bianchini SD; D'Alessio K
    J Biomed Mater Res; 1997; 38(1):17-24. PubMed ID: 9086413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength analysis of titanium and resorbable internal fixation in a mandibulotomy model.
    Ricalde P; Engroff SL; Von Fraunhofer JA; Posnick JC
    J Oral Maxillofac Surg; 2005 Aug; 63(8):1180-3. PubMed ID: 16094588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of high temperature intraoperative molding on bioabsorbable PLLA-PGA craniofacial fixation.
    Pietrzak WS; Eppley BL
    J Craniofac Surg; 2006 Sep; 17(5):920-5. PubMed ID: 17003621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of temperature on the degradation rate of LactoSorb copolymer.
    Pietrzak WS; Kumar M; Eppley BL
    J Craniofac Surg; 2003 Mar; 14(2):176-83. PubMed ID: 12621287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep analysis of PLLA: PGA copolymer craniofacial plates.
    Pietrzak WS
    J Craniofac Surg; 2012 Sep; 23(5):1507-12. PubMed ID: 22976647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of biodegradable lactides and glycolides in podiatry.
    Athanasiou KA; Niederauer GG; Agrawal CM; Landsman AS
    Clin Podiatr Med Surg; 1995 Jul; 12(3):475-95. PubMed ID: 7553536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chain Packing and Its Anomalous Effect on Mechanical Toughness for Poly(lactic acid).
    Huang T; Miura M; Nobukawa S; Yamaguchi M
    Biomacromolecules; 2015 May; 16(5):1660-6. PubMed ID: 25875749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates.
    Pietrzak WS
    J Craniofac Surg; 2010 Jan; 21(1):177-81. PubMed ID: 20098181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ciclosporin A loaded poly (D,L lactide-co-glycolide) microspheres using modulated temperature differential scanning calorimetry.
    Passerini N; Craig DQ
    J Pharm Pharmacol; 2002 Jul; 54(7):913-9. PubMed ID: 12162709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the biomechanics and histology of two soft-tissue fixators composed of bioabsorbable copolymers.
    Powers DL; Sonawala M; Woolf SK; An YH; Hawkins R; Pietrzak WS
    J Biomed Mater Res; 2001; 58(5):486-95. PubMed ID: 11505422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape memory in un-cross-linked biodegradable polymers.
    Wong YS; Xiong Y; Venkatraman SS; Boey FY
    J Biomater Sci Polym Ed; 2008; 19(2):175-91. PubMed ID: 18237491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ; Tong YW; Yang YY
    Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of additives on the release profile of nifedipine from poly(DL-lactide-co-glycolide) microspheres.
    Sansdrap P; Moës AJ
    J Microencapsul; 1998; 15(5):545-53. PubMed ID: 9743911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.