BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17483890)

  • 1. Bone ingrowth in zirconia and hydroxyapatite scaffolds with identical macroporosity.
    Malmström J; Adolfsson E; Emanuelsson L; Thomsen P
    J Mater Sci Mater Med; 2008 Sep; 19(9):2983-92. PubMed ID: 17483890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity.
    Malmström J; Adolfsson E; Arvidsson A; Thomsen P
    Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone response to free form-fabricated hydroxyapatite and zirconia scaffolds: a histological study in the human maxilla.
    Malmström J; Slotte C; Adolfsson E; Norderyd O; Thomsen P
    Clin Oral Implants Res; 2009 Apr; 20(4):379-85. PubMed ID: 19298291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone response to free-form fabricated hydroxyapatite and zirconia scaffolds: a transmission electron microscopy study in the human maxilla.
    Grandfield K; Palmquist A; Ericson F; Malmström J; Emanuelsson L; Slotte C; Adolfsson E; Botton GA; Thomsen P; Engqvist H
    Clin Implant Dent Relat Res; 2012 Jun; 14(3):461-9. PubMed ID: 20156226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of porous gradient hydroxyapatite/zirconia composites for repair of lumbar vertebra defect in dogs.
    Shao RX; Quan RF; Huang XL; Wang T; Xie SJ; Gao HH; Wei XC; Yang DS
    J Biomater Appl; 2016 Apr; 30(9):1312-21. PubMed ID: 26809701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.
    Lovati AB; Lopa S; Recordati C; Talò G; Turrisi C; Bottagisio M; Losa M; Scanziani E; Moretti M
    Calcif Tissue Int; 2016 Aug; 99(2):209-23. PubMed ID: 27075029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization.
    Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K
    Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporosity enhances bioactivity of synthetic bone graft substitutes.
    Hing KA; Annaz B; Saeed S; Revell PA; Buckland T
    J Mater Sci Mater Med; 2005 May; 16(5):467-75. PubMed ID: 15875258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition.
    Cho Y; Hong J; Ryoo H; Kim D; Park J; Han J
    J Dent Res; 2015 Mar; 94(3):491-9. PubMed ID: 25586588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ hardening hydroxyapatite-based scaffold for bone repair.
    Zhang Y; Xu HH; Takagi S; Chow LC
    J Mater Sci Mater Med; 2006 May; 17(5):437-45. PubMed ID: 16688584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-implant interface and remaining tissues on the implant surface after push-out test: an SEM observation.
    Li J
    Biomed Mater Eng; 1997; 7(6):379-85. PubMed ID: 9622105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel design of low modulus high strength zirconia scaffolds for biomedical applications.
    Marques A; Miranda G; Faria D; Pinto P; Silva F; Carvalho Ó
    J Mech Behav Biomed Mater; 2019 Sep; 97():375-384. PubMed ID: 31170671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and histomorphometric evaluation of osseointegration of fusion-sputtered zirconia implants.
    Salem NA; Abo Taleb AL; Aboushelib MN
    J Prosthodont; 2013 Jun; 22(4):261-7. PubMed ID: 23107438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity.
    Woodard JR; Hilldore AJ; Lan SK; Park CJ; Morgan AW; Eurell JA; Clark SG; Wheeler MB; Jamison RD; Wagoner Johnson AJ
    Biomaterials; 2007 Jan; 28(1):45-54. PubMed ID: 16963118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds.
    Yoshikawa M; Tsuji N; Shimomura Y; Hayashi H; Ohgushi H
    Calcif Tissue Int; 2008 Aug; 83(2):139-45. PubMed ID: 18679740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits.
    Hoffmann O; Angelov N; Zafiropoulos GG; Andreana S
    Int J Oral Maxillofac Implants; 2012; 27(2):352-8. PubMed ID: 22442775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.