These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17483909)

  • 1. Dynamics of controlled release of heparin from swellable crosslinked starch microspheres.
    Bajpai AK; Bhanu S
    J Mater Sci Mater Med; 2007 Aug; 18(8):1613-21. PubMed ID: 17483909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation and release profiles for Poly-dl-lactide film containing paracetamol.
    Zhou S; Song B; Li X
    J Mater Sci Mater Med; 2007 Aug; 18(8):1623-6. PubMed ID: 17483888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behavior to be used as drug delivery carriers.
    Malafaya PB; Stappers F; Reis RL
    J Mater Sci Mater Med; 2006 Apr; 17(4):371-7. PubMed ID: 16617416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide-based microparticles.
    Pitarresi G; Pierro P; Giammona G; Iemma F; Muzzalupo R; Picci N
    Biomaterials; 2004 Aug; 25(18):4333-43. PubMed ID: 15046924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of fenofibrate-loaded PLA-PEG microspheres.
    Ren J; Yu X; Ren T; Hong H
    J Mater Sci Mater Med; 2007 Aug; 18(8):1481-7. PubMed ID: 17387589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium.
    Kumar P; Ganure AL; Subudhi BB; Shukla S
    Drug Deliv Transl Res; 2015 Jun; 5(3):243-56. PubMed ID: 25787732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug release from starch-acetate microparticles and films with and without incorporated alpha-amylase.
    Tuovinen L; Peltonen S; Liikola M; Hotakainen M; Lahtela-Kakkonen M; Poso A; Järvinen K
    Biomaterials; 2004 Aug; 25(18):4355-62. PubMed ID: 15046926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications.
    Dini E; Alexandridou S; Kiparissides C
    J Microencapsul; 2003; 20(3):375-85. PubMed ID: 12881117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles.
    Chouhan R; Bajpai AK
    J Mater Sci Mater Med; 2009 May; 20(5):1103-14. PubMed ID: 19132508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intelligent multicompartmental system based on thermo-sensitive starch microspheres for temperature-controlled release of drugs.
    Fundueanu G; Constantin M; Ascenzi P; Simionescu BC
    Biomed Microdevices; 2010 Aug; 12(4):693-704. PubMed ID: 20414809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of zidovudine.
    Nayak UY; Gopal S; Mutalik S; Ranjith AK; Reddy MS; Gupta P; Udupa N
    J Microencapsul; 2009 May; 26(3):214-22. PubMed ID: 18819029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled heparin release from electrospun gelatin fibers.
    Wang H; Feng Y; Zhao H; Lu J; Guo J; Behl M; Lendlein A
    J Control Release; 2011 Nov; 152 Suppl 1():e28-9. PubMed ID: 22195905
    [No Abstract]   [Full Text] [Related]  

  • 14. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde.
    Tahtat D; Mahlous M; Benamer S; Khodja AN; Oussedik-Oumehdi H; Laraba-Djebari F
    Int J Biol Macromol; 2013 Jul; 58():160-8. PubMed ID: 23567292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin.
    Aramwit P; Ekasit S; Yamdech R
    Biomed Microdevices; 2015 Oct; 17(5):84. PubMed ID: 26233725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic erosion of bioartificial membranes to control drug delivery.
    Coluccio ML; Ciardelli G; Bertoni F; Silvestri D; Cristallini C; Giusti P; Barbani N
    Macromol Biosci; 2006 Jun; 6(6):403-11. PubMed ID: 16775815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A long acting biodegradable controlled delivery of chitosan microspheres loaded with tetanus toxoide as model antigen.
    Varma S; Sadasivan C
    Biomed Pharmacother; 2014 Mar; 68(2):225-30. PubMed ID: 24051124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin.
    Harris R; Lecumberri E; Heras A
    Mar Drugs; 2010 May; 8(6):1750-62. PubMed ID: 20631867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of biodegradable polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres.
    Monnier A; Rombouts C; Kouider D; About I; Fessi H; Sheibat-Othman N
    Int J Pharm; 2016 Nov; 513(1-2):49-61. PubMed ID: 27593898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.
    Dang X; Yang M; Shan Z; Mansouri S; May BK; Chen X; Chen H; Woo MW
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():493-500. PubMed ID: 28254323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.