BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17484021)

  • 1. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif.
    Gruber A; Vugrinec S; Hempel F; Gould SB; Maier UG; Kroth PG
    Plant Mol Biol; 2007 Jul; 64(5):519-30. PubMed ID: 17484021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presequence acquisition during secondary endocytobiosis and the possible role of introns.
    Kilian O; Kroth PG
    J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage.
    Gruber A; Rocap G; Kroth PG; Armbrust EV; Mock T
    Plant J; 2015 Feb; 81(3):519-28. PubMed ID: 25438865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.
    Felsner G; Sommer MS; Maier UG
    BMC Plant Biol; 2010 Oct; 10():223. PubMed ID: 20958984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.
    Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J
    BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo characterization of diatom multipartite plastid targeting signals.
    Apt KE; Zaslavkaia L; Lippmeier JC; Lang M; Kilian O; Wetherbee R; Grossman AR; Kroth PG
    J Cell Sci; 2002 Nov; 115(Pt 21):4061-9. PubMed ID: 12356911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein transport into "complex" diatom plastids utilizes two different targeting signals.
    Lang M; Apt KE; Kroth PG
    J Biol Chem; 1998 Nov; 273(47):30973-8. PubMed ID: 9812993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gene in the process of endosymbiotic transfer.
    Jiroutová K; Kořený L; Bowler C; Oborník M
    PLoS One; 2010 Oct; 5(10):e13234. PubMed ID: 20949086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.
    Huesgen PF; Alami M; Lange PF; Foster LJ; Schröder WP; Overall CM; Green BR
    PLoS One; 2013; 8(9):e74483. PubMed ID: 24066144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.
    Moog D; Nozawa A; Tozawa Y; Kamikawa R
    Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transit peptide diversity and divergence: A global analysis of plastid targeting signals.
    Patron NJ; Waller RF
    Bioessays; 2007 Oct; 29(10):1048-58. PubMed ID: 17876808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga.
    Hirakawa Y; Ishida K
    Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Bullmann L; Lau J; Zauner S; Maier UG
    Mol Biol Evol; 2009 Aug; 26(8):1781-90. PubMed ID: 19377060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi.
    Burki F; Hirakawa Y; Keeling PJ
    Mol Biol Evol; 2012 Sep; 29(9):2109-12. PubMed ID: 22466155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes.
    Gile GH; Moog D; Slamovits CH; Maier UG; Archibald JM
    Genome Biol Evol; 2015 May; 7(6):1728-42. PubMed ID: 25994931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.
    Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.