These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 17484021)
1. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Gruber A; Vugrinec S; Hempel F; Gould SB; Maier UG; Kroth PG Plant Mol Biol; 2007 Jul; 64(5):519-30. PubMed ID: 17484021 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Kilian O; Kroth PG Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195 [TBL] [Abstract][Full Text] [Related]
3. Presequence acquisition during secondary endocytobiosis and the possible role of introns. Kilian O; Kroth PG J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428 [TBL] [Abstract][Full Text] [Related]
4. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Gruber A; Rocap G; Kroth PG; Armbrust EV; Mock T Plant J; 2015 Feb; 81(3):519-28. PubMed ID: 25438865 [TBL] [Abstract][Full Text] [Related]
5. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693 [TBL] [Abstract][Full Text] [Related]
6. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts. Felsner G; Sommer MS; Maier UG BMC Plant Biol; 2010 Oct; 10():223. PubMed ID: 20958984 [TBL] [Abstract][Full Text] [Related]
7. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289 [TBL] [Abstract][Full Text] [Related]
8. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum. Kitao Y; Harada H; Matsuda Y Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418 [TBL] [Abstract][Full Text] [Related]
9. In vivo characterization of diatom multipartite plastid targeting signals. Apt KE; Zaslavkaia L; Lippmeier JC; Lang M; Kilian O; Wetherbee R; Grossman AR; Kroth PG J Cell Sci; 2002 Nov; 115(Pt 21):4061-9. PubMed ID: 12356911 [TBL] [Abstract][Full Text] [Related]
10. Protein transport into "complex" diatom plastids utilizes two different targeting signals. Lang M; Apt KE; Kroth PG J Biol Chem; 1998 Nov; 273(47):30973-8. PubMed ID: 9812993 [TBL] [Abstract][Full Text] [Related]
11. A gene in the process of endosymbiotic transfer. Jiroutová K; Kořený L; Bowler C; Oborník M PLoS One; 2010 Oct; 5(10):e13234. PubMed ID: 20949086 [TBL] [Abstract][Full Text] [Related]
12. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. Huesgen PF; Alami M; Lange PF; Foster LJ; Schröder WP; Overall CM; Green BR PLoS One; 2013; 8(9):e74483. PubMed ID: 24066144 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Moog D; Nozawa A; Tozawa Y; Kamikawa R Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711 [TBL] [Abstract][Full Text] [Related]
14. Transit peptide diversity and divergence: A global analysis of plastid targeting signals. Patron NJ; Waller RF Bioessays; 2007 Oct; 29(10):1048-58. PubMed ID: 17876808 [TBL] [Abstract][Full Text] [Related]
15. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga. Hirakawa Y; Ishida K Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565 [TBL] [Abstract][Full Text] [Related]
16. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Hempel F; Bullmann L; Lau J; Zauner S; Maier UG Mol Biol Evol; 2009 Aug; 26(8):1781-90. PubMed ID: 19377060 [TBL] [Abstract][Full Text] [Related]
17. Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi. Burki F; Hirakawa Y; Keeling PJ Mol Biol Evol; 2012 Sep; 29(9):2109-12. PubMed ID: 22466155 [TBL] [Abstract][Full Text] [Related]
18. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Gile GH; Moog D; Slamovits CH; Maier UG; Archibald JM Genome Biol Evol; 2015 May; 7(6):1728-42. PubMed ID: 25994931 [TBL] [Abstract][Full Text] [Related]
19. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306 [TBL] [Abstract][Full Text] [Related]
20. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]