These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A method to identify and simultaneously determine the relative quantities of proteins isolated by gel electrophoresis. Sechi S Rapid Commun Mass Spectrom; 2002; 16(15):1416-24. PubMed ID: 12125017 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of two-dimensional gel-separated proteins using isotopically marked alkylating agents and matrix-assisted laser desorption/ionization mass spectrometry. Gehanne S; Cecconi D; Carboni L; Righetti PG; Domenici E; Hamdan M Rapid Commun Mass Spectrom; 2002; 16(17):1692-8. PubMed ID: 12203238 [TBL] [Abstract][Full Text] [Related]
4. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568 [TBL] [Abstract][Full Text] [Related]
5. Probing the reactivity of S-S bridges to acrylamide in some proteins under high pH conditions by matrix-assisted laser desorption/ ionisation. Bordini E; Hamdan M; Righetti PG Rapid Commun Mass Spectrom; 1999; 13(18):1818-27. PubMed ID: 10482895 [TBL] [Abstract][Full Text] [Related]
6. A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Hale JE; Butler JP; Gelfanova V; You JS; Knierman MD Anal Biochem; 2004 Oct; 333(1):174-81. PubMed ID: 15351294 [TBL] [Abstract][Full Text] [Related]
7. Label-free mass spectrometry-based relative quantification of proteins separated by one-dimensional gel electrophoresis. Getie-Kebtie M; Lazarev A; Eichelberger M; Alterman M Anal Biochem; 2011 Feb; 409(2):202-12. PubMed ID: 20971051 [TBL] [Abstract][Full Text] [Related]
8. Methods in functional proteomics: two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients, in-gel digestion and identification of proteins by mass spectrometry. Bernard KR; Jonscher KR; Resing KA; Ahn NG Methods Mol Biol; 2004; 250():263-82. PubMed ID: 14755094 [No Abstract] [Full Text] [Related]
9. Probing acrylamide alkylation sites in cysteine-free proteins by matrix-assisted laser desorption/ionisation time-of-flight. Bordini E; Hamdan M; Righetti PG Rapid Commun Mass Spectrom; 2000; 14(10):840-8. PubMed ID: 10825247 [TBL] [Abstract][Full Text] [Related]
10. Strategy combining separation of isotope-labeled unfolded proteins and matrix-assisted laser desorption/ionization mass spectrometry analysis enables quantification of a wide range of serum proteins. Liao WL; Turko IV Anal Biochem; 2008 Jun; 377(1):55-61. PubMed ID: 18384735 [TBL] [Abstract][Full Text] [Related]
11. Peptide mass fingerprinting by matrix-assisted laser desorption ionization mass spectrometry of proteins detected by immunostaining on nitrocellulose. Dufresne-Martin G; Lemay JF; Lavigne P; Klarskov K Proteomics; 2005 Jan; 5(1):55-66. PubMed ID: 15602772 [TBL] [Abstract][Full Text] [Related]
12. Electrophoresis-related protein modification: alkylation of carboxy residues revealed by mass spectrometry. Haebel S; Albrecht T; Sparbier K; Walden P; Körner R; Steup M Electrophoresis; 1998 May; 19(5):679-86. PubMed ID: 9629898 [TBL] [Abstract][Full Text] [Related]
13. Protein alkylation by acrylamide, its N-substituted derivatives and cross-linkers and its relevance to proteomics: a matrix assisted laser desorption/ionization-time of flight-mass spectrometry study. Hamdan M; Bordini E; Galvani M; Righetti PG Electrophoresis; 2001 May; 22(9):1633-44. PubMed ID: 11425219 [TBL] [Abstract][Full Text] [Related]
14. In-Gel 18O labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments. Broedel O; Krause E; Stephanowitz H; Schuemann M; Eravci M; Weist S; Brunkau C; Wittke J; Eravci S; Baumgartner A J Proteome Res; 2009 Jul; 8(7):3771-7. PubMed ID: 19425618 [TBL] [Abstract][Full Text] [Related]
15. Quantitative identification of protein nitration sites. Chiappetta G; Corbo C; Palmese A; Galli F; Piroddi M; Marino G; Amoresano A Proteomics; 2009 Mar; 9(6):1524-37. PubMed ID: 19242934 [TBL] [Abstract][Full Text] [Related]
16. Protein detection methods in proteomics research. Westermeier R; Marouga R Biosci Rep; 2005; 25(1-2):19-32. PubMed ID: 16222417 [TBL] [Abstract][Full Text] [Related]
17. A novel polyacrylamide gel system for proteomic use offering controllable pore expansion by crosslinker cleavage. Bornemann S; Rietschel B; Baltruschat S; Karas M; Meyer B Electrophoresis; 2010 Jan; 31(4):585-92. PubMed ID: 20162583 [TBL] [Abstract][Full Text] [Related]
18. Effect of experimental conditions on the analysis of sodium dodecyl sulphate polyacrylamide gel electrophoresis separated proteins by matrix-assisted laser desorption/ ionisation mass spectrometry. Galvani M; Bordini E; Piubelli C; Hamdan M Rapid Commun Mass Spectrom; 2000; 14(1):18-25. PubMed ID: 10623923 [TBL] [Abstract][Full Text] [Related]
19. Quantitative carbamylation as a stable isotopic labeling method for comparative proteomics. Angel PM; Orlando R Rapid Commun Mass Spectrom; 2007; 21(10):1623-34. PubMed ID: 17465008 [TBL] [Abstract][Full Text] [Related]
20. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis. Sachon E; Mohammed S; Bache N; Jensen ON Rapid Commun Mass Spectrom; 2006; 20(7):1127-34. PubMed ID: 16521170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]