BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17484120)

  • 1. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.
    Zhang Y; Wolf-Yadlin A; White FM
    Methods Mol Biol; 2007; 359():203-12. PubMed ID: 17484120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A
    J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways.
    Yan GR; Xiao CL; He GW; Yin XF; Chen NP; Cao Y; He QY
    Proteomics; 2010 Mar; 10(5):976-86. PubMed ID: 20049867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.
    Rush J; Moritz A; Lee KA; Guo A; Goss VL; Spek EJ; Zhang H; Zha XM; Polakiewicz RD; Comb MJ
    Nat Biotechnol; 2005 Jan; 23(1):94-101. PubMed ID: 15592455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomic approaches for studying phosphotyrosine signaling.
    Ding SJ; Qian WJ; Smith RD
    Expert Rev Proteomics; 2007 Feb; 4(1):13-23. PubMed ID: 17288512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping protein-protein interactions by quantitative proteomics.
    Dengjel J; Kratchmarova I; Blagoev B
    Methods Mol Biol; 2010; 658():267-78. PubMed ID: 20839110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis reveals novel molecules involved in insulin signaling pathway.
    Wang Y; Li R; Du D; Zhang C; Yuan H; Zeng R; Chen Z
    J Proteome Res; 2006 Apr; 5(4):846-55. PubMed ID: 16602692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells.
    Schumacher JA; Crockett DK; Elenitoba-Johnson KS; Lim MS
    J Mol Diagn; 2007 Apr; 9(2):169-77. PubMed ID: 17384208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases.
    Torres M; Hall FL; O'Neill K
    J Immunol; 1993 Feb; 150(4):1563-77. PubMed ID: 7679431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates.
    Boersema PJ; Aye TT; van Veen TA; Heck AJ; Mohammed S
    Proteomics; 2008 Nov; 8(22):4624-32. PubMed ID: 18850632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics by stable isotope labeling and mass spectrometry.
    Pan S; Aebersold R
    Methods Mol Biol; 2007; 367():209-18. PubMed ID: 17185778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics to study mitogen-activated protein kinases.
    Blagoev B; Mann M
    Methods; 2006 Nov; 40(3):243-50. PubMed ID: 17071406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific degree of phosphorylation in proteins measured by liquid chromatography-electrospray mass spectrometry.
    Boehm ME; Seidler J; Hahn B; Lehmann WD
    Proteomics; 2012 Jul; 12(13):2167-78. PubMed ID: 22653803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical characteristics of cleavable isotope-coded affinity tag-LC-tandem mass spectrometry for quantitative proteomic studies.
    Vaughn CP; Crockett DK; Lim MS; Elenitoba-Johnson KS
    J Mol Diagn; 2006 Sep; 8(4):513-20. PubMed ID: 16931593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method.
    Steen H; Pandey A; Andersen JS; Mann M
    Sci STKE; 2002 Oct; 2002(154):pl16. PubMed ID: 12381836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-Phosphohistidine cannot replace phosphotyrosine in high-affinity binding to phosphotyrosine binding or Src homology 2 domains.
    Senderowicz L; Wang JX; Wang LY; Yoshizawa S; Kavanaugh WM; Turck CW
    Biochemistry; 1997 Aug; 36(34):10538-44. PubMed ID: 9265634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.
    Zhang Y; Wolf-Yadlin A; Ross PL; Pappin DJ; Rush J; Lauffenburger DA; White FM
    Mol Cell Proteomics; 2005 Sep; 4(9):1240-50. PubMed ID: 15951569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.