BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

942 related articles for article (PubMed ID: 17484137)

  • 21. Histone acetylation and methylation: combinatorial players for transcriptional regulation.
    An W
    Subcell Biochem; 2007; 41():351-69. PubMed ID: 17484136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosomes and regulation of gene expression. Structure of the HIV-1 5'LTR.
    Widłak P; Garrard WT
    Acta Biochim Pol; 1998; 45(1):209-19. PubMed ID: 9701513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone acetylation in gene regulation.
    Verdone L; Agricola E; Caserta M; Di Mauro E
    Brief Funct Genomic Proteomic; 2006 Sep; 5(3):209-21. PubMed ID: 16877467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinoid receptors in health and disease: co-regulators and the chromatin connection.
    Minucci S; Pelicci PG
    Semin Cell Dev Biol; 1999 Apr; 10(2):215-25. PubMed ID: 10441075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-viral opportunities during transcriptional activation of latent HIV in the host chromatin.
    Mujtaba S; Zhou MM
    Methods; 2011 Jan; 53(1):97-101. PubMed ID: 20828615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification.
    Imai K; Ochiai K; Okamoto T
    J Immunol; 2009 Mar; 182(6):3688-95. PubMed ID: 19265147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV-1 reactivation induced by apicidin involves histone modification in latently infected cells.
    Lin S; Zhang Y; Ying H; Zhu H
    Curr HIV Res; 2011 Jun; 9(4):202-8. PubMed ID: 21631428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of two candidate genes, NCoA3 and IRF8, potentially involved in the control of HIV-1 latency.
    Munier S; Delcroix-Genête D; Carthagéna L; Gumez A; Hazan U
    Retrovirology; 2005 Nov; 2():73. PubMed ID: 16305739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin acetylation status in the manifestation of neurodegenerative diseases: HDAC inhibitors as therapeutic tools.
    Anne-Laurence B; Caroline R; Irina P; Jean-Philippe L
    Subcell Biochem; 2007; 41():263-93. PubMed ID: 17484132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent status of HIV-1 gene expression inhibitors.
    Baba M
    Antiviral Res; 2006 Sep; 71(2-3):301-6. PubMed ID: 16488488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding "active" chromatin: a historical perspective of chromatin remodeling.
    Krebs JE; Peterson CL
    Crit Rev Eukaryot Gene Expr; 2000; 10(1):1-12. PubMed ID: 10813389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection.
    Reuse S; Calao M; Kabeya K; Guiguen A; Gatot JS; Quivy V; Vanhulle C; Lamine A; Vaira D; Demonte D; Martinelli V; Veithen E; Cherrier T; Avettand V; Poutrel S; Piette J; de Launoit Y; Moutschen M; Burny A; Rouzioux C; De Wit S; Herbein G; Rohr O; Collette Y; Lambotte O; Clumeck N; Van Lint C
    PLoS One; 2009 Jun; 4(6):e6093. PubMed ID: 19564922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repression of the human immunodeficiency virus type-1 long terminal repeat by the c-Myc oncoprotein.
    Stojanova A; Caro C; Jarjour RJ; Oster SK; Penn LZ; Germinario RJ
    J Cell Biochem; 2004 May; 92(2):400-13. PubMed ID: 15108364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency.
    du Chéné I; Basyuk E; Lin YL; Triboulet R; Knezevich A; Chable-Bessia C; Mettling C; Baillat V; Reynes J; Corbeau P; Bertrand E; Marcello A; Emiliani S; Kiernan R; Benkirane M
    EMBO J; 2007 Jan; 26(2):424-35. PubMed ID: 17245432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation.
    Van Lint C; Emiliani S; Ott M; Verdin E
    EMBO J; 1996 Mar; 15(5):1112-20. PubMed ID: 8605881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone deacetylase inhibitors--a new tool to treat cancer.
    Somech R; Izraeli S; J Simon A
    Cancer Treat Rev; 2004 Aug; 30(5):461-72. PubMed ID: 15245778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible acetylation of non histone proteins: role in cellular function and disease.
    Batta K; Das C; Gadad S; Shandilya J; Kundu TK
    Subcell Biochem; 2007; 41():193-212. PubMed ID: 17484129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription.
    Agbottah E; Deng L; Dannenberg LO; Pumfery A; Kashanchi F
    Retrovirology; 2006 Aug; 3():48. PubMed ID: 16893449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of HIV-1 proviral latency.
    Bisgrove D; Lewinski M; Bushman F; Verdin E
    Expert Rev Anti Infect Ther; 2005 Oct; 3(5):805-14. PubMed ID: 16207172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer.
    Steger DJ; Workman JL
    EMBO J; 1997 May; 16(9):2463-72. PubMed ID: 9171359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.