These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1748441)

  • 1. An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations.
    Stanley PC; Pilkington TC; Morrow MN; Ideker RE
    IEEE Trans Biomed Eng; 1991 Nov; 38(11):1069-76. PubMed ID: 1748441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for the treatment of anisotropic skeletal muscle layer in the electrocardiographic calculation.
    Wei H; Singer H
    Biomed Sci Instrum; 1993; 29():473-80. PubMed ID: 8329630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of measured and computed epicardial potentials from a patient-specific inverse model.
    Budgett DM; Monro DM; Edwards SW; Stanbridge RD
    J Electrocardiol; 1993; 26 Suppl():165-73. PubMed ID: 8189121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The volume conductor effects of anisotropic muscle on body surface potentials using an eccentric spheres model.
    Schmidt JA; Pilkington TC
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):300-3. PubMed ID: 2066145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-order coupled finite element/boundary element torso model.
    Pullan A
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):292-8. PubMed ID: 8682541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle grids for assessing current distributions from defibrillation shocks.
    Schmidt J; Gatlin B; Eason J; Koomullil G; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(1-2):121-39. PubMed ID: 1424684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combination method: a numerical technique for electrocardiographic calculations.
    Stanley PC; Pilkington TC
    IEEE Trans Biomed Eng; 1989 Apr; 36(4):456-61. PubMed ID: 2714825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector expansion techniques for the inverse problem of electrocardiography: application to a realistic heart-torso geometry.
    Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 1996; 32():101-6. PubMed ID: 8672655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy.
    Karlon WJ; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1010-7. PubMed ID: 8001989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of material properties and geometry on electrocardiographic forward simulations.
    Bradley CP; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 2000 Jul; 28(7):721-41. PubMed ID: 11016411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple-layer finite-element model of the surface EMG signal.
    Lowery MM; Stoykov NS; Taflove A; Kuiken TA
    IEEE Trans Biomed Eng; 2002 May; 49(5):446-54. PubMed ID: 12002176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):800-9. PubMed ID: 9282472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher order regularization techniques for inverse electrocardiography.
    Throne RD; Olson LG
    Biomed Sci Instrum; 1997; 34():257-62. PubMed ID: 9603049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of torso impedance on epicardial and body surface potentials: a modeling study.
    Buist ML; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia.
    Johnston PR; Kilpatrick D; Li CY
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1366-76. PubMed ID: 11759918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead field computation for the electrocardiographic inverse problem--finite elements versus boundary elements.
    Seger M; Fischer G; Modre R; Messnarz B; Hanser F; Tilg B
    Comput Methods Programs Biomed; 2005 Mar; 77(3):241-52. PubMed ID: 15721652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.