These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17484787)

  • 61. Computational simulation of blood flow in human systemic circulation incorporating an external force field.
    Sheng C; Sarwal SN; Watts KC; Marble AE
    Med Biol Eng Comput; 1995 Jan; 33(1):8-17. PubMed ID: 7616787
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A 1D model of the arterial circulation in mice.
    Aslanidou L; Trachet B; Reymond P; Fraga-Silva RA; Segers P; Stergiopulos N
    ALTEX; 2016; 33(1):13-28. PubMed ID: 26555250
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of pulsatile blood flow: a carotid siphon model.
    Perktold K; Florian H; Hilbert D
    J Biomed Eng; 1987 Jan; 9(1):46-53. PubMed ID: 3795904
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue.
    Fritz M; Köppl T; Oden JT; Wagner A; Wohlmuth B; Wu C
    Int J Numer Method Biomed Eng; 2022 Jul; 38(7):e3612. PubMed ID: 35522186
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Giving form to the function of the heart: embedding cellular models in an anatomical framework.
    Smith N; Hunter P
    Jpn J Physiol; 2004 Dec; 54(6):541-4. PubMed ID: 15760486
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stokes flow patterns induced by a single cardiac cell.
    Aboelkassem Y
    Comput Biol Med; 2017 Jul; 86():65-74. PubMed ID: 28511120
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A model of the inversion process in an arterial inversion experiment.
    Marro KI; Hayes CE; Kushmerick MJ
    NMR Biomed; 1997 Oct; 10(7):324-32. PubMed ID: 9471123
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A numerical simulation of the flow in a T-type bifurcation and its application to an "end to side" fistula.
    Enden G; Israeli M; Dinnar U
    J Biomech Eng; 1985 Nov; 107(4):321-6. PubMed ID: 4079358
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Relative pressure estimation from velocity measurements in blood flows: State-of-the-art and new approaches.
    Bertoglio C; Nuñez R; Galarce F; Nordsletten D; Osses A
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28884520
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pulsatile pressure and flow in an arterial aneurysm simulated in a mathematical model.
    Wille SO
    J Biomed Eng; 1981 Apr; 3(2):153-8. PubMed ID: 7230761
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A simple model for the two dimensional blood flow in the collapse of veins.
    Chow KW; Mak CC
    J Math Biol; 2006 Jun; 52(6):733-44. PubMed ID: 16699834
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
    Islam MZ; Tsui YY
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706104
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tissue-growth-based synthetic tree generation and perfusion simulation.
    Kim HJ; Rundfeldt HC; Lee I; Lee S
    Biomech Model Mechanobiol; 2023 Jun; 22(3):1095-1112. PubMed ID: 36869925
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Finite element solution of the Navier-Stokes equations for two-dimensional steady flow through a section of a canine aorta model.
    Gokhale VV; Tanner RI; Bischoff KB
    J Biomech; 1978; 11(5):241-9. PubMed ID: 711773
    [No Abstract]   [Full Text] [Related]  

  • 75. A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling.
    Wan W; Hansen L; Gleason RL
    Biomech Model Mechanobiol; 2010 Aug; 9(4):403-19. PubMed ID: 20039091
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Particle behavior in flow through small bifurcations.
    Levine R; Goldsmith HL
    Microvasc Res; 1977 Nov; 14(3):319-44. PubMed ID: 593166
    [No Abstract]   [Full Text] [Related]  

  • 77. A simple model for the arterial system.
    Bengtsson HU; Edén P
    J Theor Biol; 2003 Apr; 221(3):437-43. PubMed ID: 12642118
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An implicit solver for 1D arterial network models.
    Carson J; Van Loon R
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27709800
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Driving Mechanism for Unidirectional Blood Flow in the Tubular Embryonic Heart.
    Kozlovsky P; Bryson-Richardson RJ; Jaffa AJ; Rosenfeld M; Elad D
    Ann Biomed Eng; 2016 Oct; 44(10):3069-3083. PubMed ID: 27112782
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Developing transmission line equations of oxygen transport for predicting oxygen distribution in the arterial system.
    Yan F; Jiang WT; Xu Z; Wang QY; Fan YB; Zhang M
    Sci Rep; 2018 Mar; 8(1):5369. PubMed ID: 29599481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.