BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17485282)

  • 1. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of tadpole-shaped calcium alginate microparticles with sphericity control.
    Dang TD; Joo SW
    Colloids Surf B Biointerfaces; 2013 Feb; 102():766-71. PubMed ID: 23107954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate-based emulsion template containing high oil loading stabilized by nonionic surfactants.
    Ong WD; Tey BT; Quek SY; Tang SY; Chan ES
    J Food Sci; 2015 Jan; 80(1):E93-E100. PubMed ID: 25529579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
    Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA
    Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip.
    Yang CH; Huang KS; Chang JY
    Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.
    Martins E; Renard D; Adiwijaya Z; Karaoglan E; Poncelet D
    J Microencapsul; 2017 Feb; 34(1):82-90. PubMed ID: 28097931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.
    Abang S; Chan ES; Poncelet D
    J Microencapsul; 2012; 29(5):417-28. PubMed ID: 22292966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High precision microfluidic microencapsulation of bacteriophages for enteric delivery.
    Vinner GK; Malik DJ
    Res Microbiol; 2018 Nov; 169(9):522-530. PubMed ID: 29886256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.
    Fang A; Cathala B
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):81-6. PubMed ID: 20833004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic generation of hollow Ca-alginate microfibers.
    Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size control of calcium alginate beads containing living cells using micro-nozzle array.
    Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M
    Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.