BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1748563)

  • 1. A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells.
    Zheng MH; Papadimitriou JM; Nicholson GC
    Histochem J; 1991 Apr; 23(4):180-8. PubMed ID: 1748563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Apr; 124(4):1689-96. PubMed ID: 2924719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts.
    Baron R; Neff L; Tran Van P; Nefussi JR; Vignery A
    Am J Pathol; 1986 Feb; 122(2):363-78. PubMed ID: 3946557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrastructural and cytochemical study of the pulmonary lesions and multinucleate giant cells in porcine dermatosis vegetans.
    Evensen O; Bratberg B
    APMIS; 1992 Jun; 100(6):515-22. PubMed ID: 1610550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA.
    Connor JR; Dodds RA; James IE; Gowen M
    J Histochem Cytochem; 1995 Dec; 43(12):1193-201. PubMed ID: 8537635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrioles, microtubules and microfilaments in activated mononuclear and multinucleate macrophages from rat peritoneum: electron-microscopic and immunofluorescence microscopic studies.
    Cain H; Kraus B; Fringes B; Osborn M; Weber K
    J Pathol; 1981 Apr; 133(4):301-23. PubMed ID: 7017096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of resident and exudate macrophages in multinucleate giant cell formation.
    Papadimitriou JM
    J Pathol; 1979 Jun; 128(2):93-7. PubMed ID: 469657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant lysosomes, a cytoplasmic marker in osteoclasts of beige mice.
    Ash P; Loutit JF; Townsend KM
    J Pathol; 1980 Apr; 130(4):237-45. PubMed ID: 7391859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondroclasts and osteoclasts in bones of young rats: comparison of ultrastructural and functional features.
    Nordahl J; Andersson G; Reinholt FP
    Calcif Tissue Int; 1998 Nov; 63(5):401-8. PubMed ID: 9799825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multinucleate cells in giant cell granulomas of the jaw are osteoclasts.
    Flanagan AM; Nui B; Tinkler SM; Horton MA; Williams DM; Chambers TJ
    Cancer; 1988 Sep; 62(6):1139-45. PubMed ID: 2457425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odontoclastic resorption of the superficial nonmineralized layer of predentine in the shedding of human deciduous teeth.
    Sahara N; Okafuji N; Toyoki A; Ashizawa Y; Deguchi T; Suzuki K
    Cell Tissue Res; 1994 Jul; 277(1):19-26. PubMed ID: 8055536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different tartrate sensitivity and pH optimum for two isoenzymes of acid phosphatase in osteoclasts. An electron-microscopic enzyme-cytochemical study.
    Akisaka T; Subita GP; Kawaguchi H; Shigenaga Y
    Cell Tissue Res; 1989 Jan; 255(1):69-76. PubMed ID: 2661005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis.
    Prieto-Potin I; Largo R; Roman-Blas JA; Herrero-Beaumont G; Walsh DA
    BMC Musculoskelet Disord; 2015 Aug; 16():226. PubMed ID: 26311062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ultrastructural localization of secretory acid phosphatase in giant cell tumor of bone.
    McCarthy EF; Serrano JA; Wasserkrug HL; Dorfman HD
    Clin Orthop Relat Res; 1979 Jun; (141):295-302. PubMed ID: 477118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural cytochemical and ultrastructural morphological differences between human multinucleated giant cells elicited by wear particles from hip prostheses and artificial ligaments at the knee.
    Anazawa U; Hanaoka H; Morioka H; Morii T; Toyama Y
    Ultrastruct Pathol; 2004; 28(5-6):353-9. PubMed ID: 15764583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional study of the cytoskeleton in macrophages and multinucleate giant cells by quick-freezing and deep-etching method.
    Baba T; Shiozawa N; Hotchi M; Ohno S
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1991; 61(1):39-47. PubMed ID: 1683062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal control of nuclear arrangement in Langhans multinucleate giant cells.
    Rigby PJ; Papadimitriou JM
    J Pathol; 1984 May; 143(1):17-29. PubMed ID: 6539818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry.
    Clark SA; Ambrose WW; Anderson TR; Terrell RS; Toverud SU
    J Bone Miner Res; 1989 Jun; 4(3):399-405. PubMed ID: 2763875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant cells in arthritic synovium.
    Wilkinson LS; Pitsillides AA; Edwards JC
    Ann Rheum Dis; 1993 Mar; 52(3):182-4. PubMed ID: 7683454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclast origin of giant cells in giant cell tumors of bone: ultrastructural and cytochemical study of six cases.
    Mii Y; Miyauchi Y; Morishita T; Miura S; Honoki K; Aoki M; Tamai S
    Ultrastruct Pathol; 1991; 15(6):623-9. PubMed ID: 1799027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.