BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17485832)

  • 21. Re-feeding rats a high-sucrose diet after 3 days of starvation enhances histone H3 acetylation in transcribed region and expression of jejunal GLUT5 gene.
    Honma K; Masuda Y; Mochizuki K; Goda T
    Biosci Biotechnol Biochem; 2014; 78(6):1071-3. PubMed ID: 25036137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5.
    Matosin-Matekalo M; Mesonero JE; Laroche TJ; Lacasa M; Brot-Laroche E
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):233-9. PubMed ID: 10191252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trimethylation of histone H3K4 is associated with the induction of fructose-inducible genes in rat jejunum.
    Yoshinaga Y; Mochizuki K; Goda T
    Biochem Biophys Res Commun; 2012 Mar; 419(4):605-11. PubMed ID: 22366086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute interactions between intestinal sugar and calcium transport in vitro.
    Tharabenjasin P; Douard V; Patel C; Krishnamra N; Johnson RJ; Zuo J; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2014 Jan; 306(1):G1-12. PubMed ID: 24177030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De-phosphorylation of TRalpha-1 by p44/42 MAPK inhibition enhances T(3)-mediated GLUT5 gene expression in the intestinal cell line Caco-2 cells.
    Mochizuki K; Sakaguchi N; Takabe S; Goda T
    Biochem Biophys Res Commun; 2007 Aug; 359(4):979-84. PubMed ID: 17577579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precocious enhancement of intestinal fructose uptake by diet in adrenalectomized rat pups.
    Monteiro IM; Ferraris RP
    Pediatr Res; 1997 Mar; 41(3):353-8. PubMed ID: 9078534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal absorption of D-fructose isomers, D-allulose, D-sorbose and D-tagatose, via glucose transporter type 5 (GLUT5) but not sodium-dependent glucose cotransporter 1 (SGLT1) in rats.
    Kishida K; Iida T; Yamada T; Toyoda Y
    Br J Nutr; 2023 Dec; 130(11):1852-1858. PubMed ID: 38713062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luminal fructose modulates fructose transport and GLUT-5 expression in small intestine of weaning rats.
    Shu R; David ES; Ferraris RP
    Am J Physiol; 1998 Feb; 274(2):G232-9. PubMed ID: 9486174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GLUT5 increases fructose utilization and promotes tumor progression in glioma.
    Su C; Li H; Gao W
    Biochem Biophys Res Commun; 2018 Jun; 500(2):462-469. PubMed ID: 29660339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation.
    Jiang L; David ES; Espina N; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2001 Sep; 281(3):G666-74. PubMed ID: 11518678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells.
    Mesonero J; Matosin M; Cambier D; Rodriguez-Yoldi MJ; Brot-Laroche E
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):757-62. PubMed ID: 8554516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome.
    Liu J; Wang R; Desai K; Wu L
    Cardiovasc Res; 2011 Dec; 92(3):494-503. PubMed ID: 21890532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and mechanism of the mammalian fructose transporter GLUT5.
    Nomura N; Verdon G; Kang HJ; Shimamura T; Nomura Y; Sonoda Y; Hussien SA; Qureshi AA; Coincon M; Sato Y; Abe H; Nakada-Nakura Y; Hino T; Arakawa T; Kusano-Arai O; Iwanari H; Murata T; Kobayashi T; Hamakubo T; Kasahara M; Iwata S; Drew D
    Nature; 2015 Oct; 526(7573):397-401. PubMed ID: 26416735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport.
    Ebert K; Ewers M; Bisha I; Sander S; Rasputniac T; Daniel H; Antes I; Witt H
    J Biol Chem; 2018 Feb; 293(6):2115-2124. PubMed ID: 29259131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine.
    Obi IE; Sterling KM; Ahearn GA
    J Exp Biol; 2011 Jul; 214(Pt 14):2337-44. PubMed ID: 21697425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishing a yeast-based screening system for discovery of human GLUT5 inhibitors and activators.
    Tripp J; Essl C; Iancu CV; Boles E; Choe JY; Oreb M
    Sci Rep; 2017 Jul; 7(1):6197. PubMed ID: 28740135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5.
    Soueidan OM; Trayner BJ; Grant TN; Henderson JR; Wuest F; West FG; Cheeseman CI
    Org Biomol Chem; 2015 Jun; 13(23):6511-21. PubMed ID: 25975431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering cell metabolism for high-density cell culture via manipulation of sugar transport.
    Wlaschin KF; Hu WS
    J Biotechnol; 2007 Aug; 131(2):168-76. PubMed ID: 17662499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the fructose transporter GLUT5 in health and disease.
    Douard V; Ferraris RP
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E227-37. PubMed ID: 18398011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation.
    George Thompson AM; Ursu O; Babkin P; Iancu CV; Whang A; Oprea TI; Choe JY
    Sci Rep; 2016 Apr; 6():24240. PubMed ID: 27074918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.