BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17485959)

  • 1. Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment.
    Barauskas R; Gulbinas A; Barauskas G
    Medicina (Kaunas); 2007; 43(4):310-25. PubMed ID: 17485959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.
    Subramanian S; Mast TD
    Phys Med Biol; 2015 Oct; 60(19):N345-55. PubMed ID: 26352462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue.
    Barauskas R; Gulbinas A; Vanagas T; Barauskas G
    Comput Biol Med; 2008 Jun; 38(6):694-708. PubMed ID: 18466889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity.
    Chang I
    Biomed Eng Online; 2003 May; 2():12. PubMed ID: 12780939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling and experimental investigation of infiltration of sodium chloride solution into nonviable liver tissue.
    Barauskas R; Gulbinas A; Barauskas G
    Medicina (Kaunas); 2007; 43(5):399-411. PubMed ID: 17563417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures.
    Liu Z; Ahmed M; Gervais D; Humphries S; Goldberg SN
    J Vasc Interv Radiol; 2008 Jul; 19(7):1079-86. PubMed ID: 18589323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical evaluation of ablation zone under different tip temperatures during radiofrequency ablation.
    Wang XR; Gao HJ; Wu SC; Jiang T; Zhou ZH; Bai YP
    Math Biosci Eng; 2019 Mar; 16(4):2514-2531. PubMed ID: 31137225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the cooling effect of flowing blood on hepatic tumor ablation process.
    Hamza NH
    J Med Eng Technol; 2018 Aug; 42(6):475-481. PubMed ID: 30608192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surgical device for radiofrequency ablation of large liver tumors.
    dos Santos I; Correia D; Soares AJ; Góes JA; da Rocha AF; Schutt D; Haemmerich D
    Physiol Meas; 2008 Oct; 29(10):N59-70. PubMed ID: 18812644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric and thermal field effects in tissue around radiofrequency electrodes.
    Cosman ER; Cosman ER
    Pain Med; 2005; 6(6):405-24. PubMed ID: 16336478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar radiofrequency ablation with 2 × 2 electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling.
    Mulier S; Jiang Y; Jamart J; Wang C; Feng Y; Marchal G; Michel L; Ni Y
    Int J Hyperthermia; 2015; 31(6):649-65. PubMed ID: 26156212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical study of an internally cooled bipolar electrode for RF coagulation of biological tissues.
    González-Suárez A; Alba J; Trujillo M; Berjano E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6878-81. PubMed ID: 22255919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental study on RF tumor ablation with internally cooled electrodes: when does the roll-off occur?
    Alba J; González-Suárez A; Trujillo M; Berjano E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():314-7. PubMed ID: 22254312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: a computational modeling study.
    Schutt D; Berjano EJ; Haemmerich D
    Int J Hyperthermia; 2009 Mar; 25(2):99-107. PubMed ID: 19337910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Combination of Different Electrode Spacings and Power on Bipolar Radiofrequency Fat Dissolution: A Computational and Experimental Study.
    Zang L; Zhou Y; Kang J; Song C
    Lasers Surg Med; 2020 Dec; 52(10):1020-1031. PubMed ID: 32342532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.