BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17486301)

  • 1. Reaction of sodium calcium borate glasses to form hydroxyapatite.
    Han X; Day DE
    J Mater Sci Mater Med; 2007 Sep; 18(9):1837-47. PubMed ID: 17486301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.
    Fu H; Rahaman MN; Day DE; Huang W
    J Mater Sci Mater Med; 2010 Oct; 21(10):2733-41. PubMed ID: 20680413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.
    Zhao D; Huang W; Rahaman MN; Day DE; Wang D
    Acta Biomater; 2009 May; 5(4):1265-73. PubMed ID: 19119086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of hollow hydroxyapatite microspheres.
    Wang Q; Huang W; Wang D; Darvell BW; Day DE; Rahaman MN
    J Mater Sci Mater Med; 2006 Jul; 17(7):641-6. PubMed ID: 16770549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method for early investigation of bioactivity in different borate bio-glasses.
    Abdelghany AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():120-6. PubMed ID: 22455957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.
    Abdelghany AM; Ouis MA; Azooz MA; ElBatal HA; El-Bassyouni GT
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():126-33. PubMed ID: 26204506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.
    Huang W; Day DE; Kittiratanapiboon K; Rahaman MN
    J Mater Sci Mater Med; 2006 Jul; 17(7):583-96. PubMed ID: 16770542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W; Li X; Zhou S; Weng J
    J Biomed Mater Res A; 2007 Sep; 82(4):831-41. PubMed ID: 17326137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F
    J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na₂O-CaO-B₂O₃-P₂O₅ glasses.
    Abo-Naf SM; Khalil el-SM; El-Sayed el-SM; Zayed HA; Youness RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():88-98. PubMed ID: 25748986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite.
    Qian J; Kang Y; Zhang W; Li Z
    J Mater Sci Mater Med; 2008 Nov; 19(11):3373-83. PubMed ID: 18545942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of porous microspheres made from borate glass.
    Conzone SD; Day DE
    J Biomed Mater Res A; 2009 Feb; 88(2):531-42. PubMed ID: 18306308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength of hollow hydroxyapatite microspheres prepared by a glass conversion process.
    Huang W; Rahaman MN; Day DE; Miller BA
    J Mater Sci Mater Med; 2009 Jan; 20(1):123-9. PubMed ID: 18704649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis.
    Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN
    Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.
    Liu X; Pan H; Fu H; Fu Q; Rahaman MN; Huang W
    Biomed Mater; 2010 Feb; 5(1):15005. PubMed ID: 20057014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins.
    Fu H; Rahaman MN; Day DE; Brown RF
    J Mater Sci Mater Med; 2011 Mar; 22(3):579-91. PubMed ID: 21290170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.
    Liu C; Chen CW; Ducheyne P
    Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.
    Fu H; Rahaman MN; Day DE; Huang W
    J Mater Sci Mater Med; 2012 May; 23(5):1181-91. PubMed ID: 22415362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity.
    Ostomel TA; Shi Q; Tsung CK; Liang H; Stucky GD
    Small; 2006 Nov; 2(11):1261-5. PubMed ID: 17192971
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.