These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17486383)

  • 1. Classification of adipose tissue species using Raman spectroscopy.
    Beattie JR; Bell SE; Borggaard C; Fearon AM; Moss BW
    Lipids; 2007 Jul; 42(7):679-85. PubMed ID: 17486383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy.
    Robert C; Fraser-Miller SJ; Jessep WT; Bain WE; Hicks TM; Ward JF; Craigie CR; Loeffen M; Gordon KC
    Food Chem; 2021 May; 343():128441. PubMed ID: 33127228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining quality of caviar from Caspian Sea based on Raman spectroscopy and using artificial neural networks.
    Mohamadi Monavar H; Afseth NK; Lozano J; Alimardani R; Omid M; Wold JP
    Talanta; 2013 Jul; 111():98-104. PubMed ID: 23622531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of omega-6 and omega-3 fatty acids in pork adipose tissue with nondestructive Raman and fourier transform infrared spectroscopy.
    Olsen EF; Rukke EO; Egelandsdal B; Isaksson T
    Appl Spectrosc; 2008 Sep; 62(9):968-74. PubMed ID: 18801235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of adipose tissue composition using Raman spectroscopy: average properties and individual fatty acids.
    Beattie JR; Bell SE; Borgaard C; Fearon A; Moss BW
    Lipids; 2006 Mar; 41(3):287-94. PubMed ID: 16711604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of boar taint classification using a portable Raman device.
    Liu X; Schmidt H; Mörlein D
    Meat Sci; 2016 Jun; 116():133-9. PubMed ID: 26882212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of meat species by using laser-induced breakdown spectroscopy.
    Bilge G; Velioglu HM; Sezer B; Eseller KE; Boyaci IH
    Meat Sci; 2016 Sep; 119():118-22. PubMed ID: 27179147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for discrimination of beef and horsemeat using Raman spectroscopy.
    Boyacı İH; Temiz HT; Uysal RS; Velioğlu HM; Yadegari RJ; Rishkan MM
    Food Chem; 2014 Apr; 148():37-41. PubMed ID: 24262523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of skin cancer by classification of Raman spectra.
    Sigurdsson S; Philipsen PA; Hansen LK; Larsen J; Gniadecka M; Wulf HC
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1784-93. PubMed ID: 15490825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of lard in animal fat mixture using visible Raman spectroscopy.
    Lee JY; Park JH; Mun H; Shim WB; Lim SH; Kim MG
    Food Chem; 2018 Jul; 254():109-114. PubMed ID: 29548429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of frankfurters by FT-Raman spectroscopy and chemometric methods.
    Campos Nda S; Oliveira KS; Almeida MR; Stephani R; de Oliveira LF
    Molecules; 2014 Nov; 19(11):18980-92. PubMed ID: 25412044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term stability of a Raman instrument determining iodine value in pork adipose tissue.
    Olsen EF; Baustad C; Egelandsdal B; Rukke EO; Isaksson T
    Meat Sci; 2010 May; 85(1):1-6. PubMed ID: 20374856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species.
    Doty KC; Lednev IK
    Forensic Sci Int; 2018 Jan; 282():204-210. PubMed ID: 29223123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of intramuscular fat content and major fatty acid groups of lamb M. longissimus lumborum using Raman spectroscopy.
    Fowler SM; Ponnampalam EN; Schmidt H; Wynn P; Hopkins DL
    Meat Sci; 2015 Dec; 110():70-5. PubMed ID: 26188359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern recognition-based Raman spectroscopy for non-destructive detection of pomegranates during maturity.
    Khodabakhshian R; Abbaspour-Fard MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118127. PubMed ID: 32058918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid determination of pork sensory quality using Raman spectroscopy.
    Wang Q; Lonergan SM; Yu C
    Meat Sci; 2012 Jul; 91(3):232-9. PubMed ID: 22341828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ Raman spectrometric analysis of crystallinity and crystal polymorphism of fat in porcine adipose tissue.
    Motoyama M; Chikuni K; Narita T; Aikawa K; Sasaki K
    J Agric Food Chem; 2013 Jan; 61(1):69-75. PubMed ID: 23230815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages.
    Gouvinhas I; Machado N; Carvalho T; de Almeida JM; Barros AI
    Talanta; 2015 Jan; 132():829-35. PubMed ID: 25476384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods.
    Seifert S; Merk V; Kneipp J
    J Biophotonics; 2016 Jan; 9(1-2):181-9. PubMed ID: 26249322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.