These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17486442)

  • 41. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.
    Li SW; Leng Y; Feng L; Zeng XY
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):525-37. PubMed ID: 23812737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus.
    Ruangsomboon S; Wongrat L
    Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of cadmium-induced phytotoxicity in Cabomba caroliniana by urea involves photosynthetic metabolism and antioxidant status.
    Huang W; Shao H; Zhou S; Zhou Q; Li W; Xing W
    Ecotoxicol Environ Saf; 2017 Oct; 144():88-96. PubMed ID: 28601521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) mixture toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Mabury SA; Solomon KR; Muir DC
    Sci Total Environ; 2002 Feb; 285(1-3):247-59. PubMed ID: 11878273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulating role of abscisic acid on cadmium enrichment in ramie (Boehmeria nivea L.).
    Chen K; Chen P; Qiu X; Chen J; Gao G; Wang X; Zhu A; Yu C
    Sci Rep; 2021 Nov; 11(1):22045. PubMed ID: 34764306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Limnothrix sp. KO05: A newly characterized cyanobacterial biosorbent for cadmium removal: the enzymatic and non-enzymatic antioxidant reactions to cadmium toxicity.
    Haghighi O; Shahryari S; Ebadi M; Modiri S; Zahiri HS; Maleki H; Noghabi KA
    Environ Toxicol Pharmacol; 2017 Apr; 51():142-155. PubMed ID: 28343753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba.
    Martinez S; Sáenz ME; Alberdi JL; Di Marzio WD
    Ecotoxicology; 2020 Jul; 29(5):571-583. PubMed ID: 32342293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genotypes of the aquatic plant Myriophyllum spicatum with different growth strategies show contrasting sensitivities to copper contamination.
    Roubeau Dumont E; Larue C; Michel HC; Gryta H; Liné C; Baqué D; Maria Gross E; Elger A
    Chemosphere; 2020 Apr; 245():125552. PubMed ID: 31846788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil.
    Pan W; Lu Q; Xu QR; Zhang RR; Li HY; Yang YH; Liu HJ; Du ST
    Ecotoxicol Environ Saf; 2019 Aug; 177():100-107. PubMed ID: 30974243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum.
    Brain RA; Bestari KJ; Sanderson H; Hanson ML; Wilson CJ; Johnson DJ; Sibley PK; Solomon KR
    Environ Pollut; 2005 Feb; 133(3):389-401. PubMed ID: 15519715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Soil high Cd exacerbates the adverse impact of elevated O
    Xu S; Li B; Li P; He X; Chen W; Yan K; Li Y; Wang Y
    Ecotoxicol Environ Saf; 2019 Jun; 174():35-42. PubMed ID: 30818258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes.
    Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M
    Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.
    Manquián-Cerda K; Escudey M; Zúñiga G; Arancibia-Miranda N; Molina M; Cruces E
    Ecotoxicol Environ Saf; 2016 Nov; 133():316-26. PubMed ID: 27485373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum.
    Zhou Q; Gao J; Zhang R; Zhang R
    Ecotoxicol Environ Saf; 2017 Sep; 143():102-110. PubMed ID: 28525813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Environ Toxicol Chem; 2001 Dec; 20(12):2758-67. PubMed ID: 11764159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenolic compounds responding to zinc and/or cadmium treatments in Gynura pseudochina (L.) DC. extracts and biomass.
    Mongkhonsin B; Nakbanpote W; Hokura A; Nuengchamnong N; Maneechai S
    Plant Physiol Biochem; 2016 Dec; 109():549-560. PubMed ID: 27837723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine.
    Teodorović I; Knežević V; Tunić T; Cučak M; Lečić JN; Leovac A; Tumbas II
    Environ Toxicol Chem; 2012 Feb; 31(2):417-26. PubMed ID: 22095561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Testing the use of the water milfoil (Myriophyllum spicatum L.) in laboratory toxicity assays.
    Sánchez D; Graça MA; Canhoto J
    Bull Environ Contam Toxicol; 2007 Jun; 78(6):421-6. PubMed ID: 17492386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microcosm evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acid.
    Hanson ML; Sibley PK; Brain RA; Mabury SA; Solomon KR
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):329-37. PubMed ID: 15750772
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myriophyllum alterniflorum biochemical changes during in vitro Cu/Cd metal stress: Focusing on cell detoxifying enzymes.
    Decou R; Delmail D; Labrousse P
    Aquat Toxicol; 2020 Feb; 219():105361. PubMed ID: 31862548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.