These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17486655)

  • 1. Model-based characterization of an amino acid racemase from Pseudomonas putida DSM 3263 for application in medium-constrained continuous processes.
    Bechtold M; Makart S; Reiss R; Alder P; Panke S
    Biotechnol Bioeng; 2007 Nov; 98(4):812-24. PubMed ID: 17486655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-assisted physicochemical enantioseparation processes-Part III: Overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization.
    Würges K; Petrusevska-Seebach K; Elsner MP; Lütz S
    Biotechnol Bioeng; 2009 Dec; 104(6):1235-9. PubMed ID: 19655380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996.
    Kino K; Sato M; Yoneyama M; Kirimura K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1299-305. PubMed ID: 17028872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards preparative asymmetric synthesis of beta-hydroxy-alpha-amino acids: L-allo-threonine formation from glycine and acetaldehyde using recombinant GlyA.
    Makart S; Bechtold M; Panke S
    J Biotechnol; 2007 Jul; 130(4):402-10. PubMed ID: 17597243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-rational engineering of an amino acid racemase that is stabilized in aqueous/organic solvent mixtures.
    Femmer C; Bechtold M; Panke S
    Biotechnol Bioeng; 2020 Sep; 117(9):2683-2693. PubMed ID: 32492177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase.
    Ishiwata K; Fukuhara N; Shimada M; Makiguchi N; Soda K
    Biotechnol Appl Biochem; 1990 Apr; 12(2):141-9. PubMed ID: 2109982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827.
    Hsu SK; Lo HH; Kao CH; Lee DS; Hsu WH
    Biotechnol Prog; 2006; 22(6):1578-84. PubMed ID: 17137304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining design and scale-up parameters for degradation of atrazine with suspended Pseudomonas sp. ADP in aqueous bioreactors.
    Biglione N; Rodgers VG; Peeples TL
    Biotechnol Prog; 2008; 24(3):588-92. PubMed ID: 18471024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid racemization in Pseudomonas putida KT2440.
    Radkov AD; Moe LA
    J Bacteriol; 2013 Nov; 195(22):5016-24. PubMed ID: 23995642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.
    Matsui D; Oikawa T; Arakawa N; Osumi S; Lausberg F; Stäbler N; Freudl R; Eggeling L
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1045-54. PubMed ID: 19300994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearized kinetic model of Listeria monocytogenes biofilm growth.
    Takhistov P; George B
    Bioprocess Biosyst Eng; 2004 Jul; 26(4):259-70. PubMed ID: 15179574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The OCT plasmid encodes D-lysine membrane transport and catabolic enzymes in Pseudomonas putida.
    Cao X; Kolonay J; Saxton KA; Hartline RA
    Plasmid; 1993 Sep; 30(2):83-9. PubMed ID: 8234494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new process for acrylic acid synthesis by fermentative process.
    Lunelli BH; Duarte ER; Vasco de Toledo EC; Wolf Maciel MR; Maciel Filho R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):487-99. PubMed ID: 18478411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation.
    Studer M; Rudolf von Rohr P
    Biotechnol Bioeng; 2008 Jan; 99(1):38-48. PubMed ID: 17570707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closure effects on oxygen transfer and aerobic growth in shake flasks.
    Nikakhtari H; Hill GA
    Biotechnol Bioeng; 2006 Sep; 95(1):15-21. PubMed ID: 16607655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-step kinetic model for substrate assimilation and bacterial growth: application to benzene biodegradation.
    Bordel S; Muñoz R; Díaz LF; Villaverde S
    Biotechnol Bioeng; 2007 Aug; 97(5):1098-107. PubMed ID: 17216658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324.
    Martín MM; Pérez JA; Fernández FG; Sánchez JL; López JL; Rodríguez SM
    J Hazard Mater; 2008 Mar; 151(2-3):780-8. PubMed ID: 17646049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naphthalene biodegradation from non-aqueous-phase liquids in batch and column systems: comparison of biokinetic rate coefficients.
    Alshafie M; Ghoshal S
    Biotechnol Prog; 2003; 19(3):844-52. PubMed ID: 12790648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli.
    Babaeipour V; Shojaosadati SA; Khalilzadeh R; Maghsoudi N; Tabandeh F
    Biotechnol Appl Biochem; 2008 Feb; 49(Pt 2):141-7. PubMed ID: 17630954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.