These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17487084)

  • 1. Polychromatic considerations for the compensation of the wavefront aberration of the human eye.
    Alonso M; Barreto A
    Biomed Sci Instrum; 2007; 43():218-23. PubMed ID: 17487084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital image processing for pre-compensation of high-order aberrations of the human eye.
    Alonso M; Barreto A
    Biomed Sci Instrum; 2003; 39():99-104. PubMed ID: 12724876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Software-based compensation of visual refractive errors of computer users.
    Alonso M; Barreto A; Choudhury M; Jacko JA; Adjouadi M
    Biomed Sci Instrum; 2005; 41():229-34. PubMed ID: 15850110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Le Grand eye for the study of ocular chromatic aberration.
    Villegas ER; Carretero L; Fimia A
    Ophthalmic Physiol Opt; 1996 Nov; 16(6):528-31. PubMed ID: 8944201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of retinal image quality for polychromatic light.
    Ravikumar S; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2395-407. PubMed ID: 18830317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual methods for analyzing time-oriented data.
    Aigner W; Miksch S; Müller W; Schumann H; Tominski C
    IEEE Trans Vis Comput Graph; 2008; 14(1):47-60. PubMed ID: 17993701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A statistical model of the aberration structure of normal, well-corrected eyes.
    Thibos LN; Bradley A; Hong X
    Ophthalmic Physiol Opt; 2002 Sep; 22(5):427-33. PubMed ID: 12358314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the dynamic wavefront aberrations in the human eye.
    Iskander DR; Collins MJ; Morelande MR; Zhu M
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1969-80. PubMed ID: 15536899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of higher-order wavefront aberrations with visual function in pseudophakic eyes.
    Hayashi K; Yoshida M; Hayashi H
    Eye (Lond); 2008 Dec; 22(12):1476-82. PubMed ID: 17603464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators.
    Durán V; Climent V; Tajahuerce E; Jaroszewicz Z; Arines J; Bará S
    J Biomed Opt; 2007; 12(1):014037. PubMed ID: 17343512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point spread function analysis in a child with ectopia lentis: objective optical function evaluation and correction of refractive errors.
    Goto M; Tachikawa T; Negishi K; Ohnuma K; Shibutani M; Kobayashi K; Takeuchi G; Ohno K; Matsubara M; Noda T
    Acta Ophthalmol; 2009 Aug; 87(5):567-9. PubMed ID: 19489764
    [No Abstract]   [Full Text] [Related]  

  • 15. Limitations of the ocular wavefront correction with contact lenses.
    López-Gil N; Castejón-Mochón JF; Fernández-Sánchez V
    Vision Res; 2009 Jul; 49(14):1729-37. PubMed ID: 19389418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New intraocular lens for achromatizing the human eye.
    López-Gil N; Montés-Micó R
    J Cataract Refract Surg; 2007 Jul; 33(7):1296-302. PubMed ID: 17586390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study into the effect of chromatic aberration in the human eye on colour perception.
    Cobb SR
    Br J Physiol Opt; 1974; 29(3):109-17. PubMed ID: 4470005
    [No Abstract]   [Full Text] [Related]  

  • 18. Wavefront aberration reconstruction from tangential refractive powers measured with spatial dynamic skiascopy.
    Barbero S
    Appl Opt; 2012 Dec; 51(36):8599-605. PubMed ID: 23262600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On a possible explanation as to why most people have small refractive errors.
    Cobb SR
    Med Hypotheses; 1993 Aug; 41(2):134-6. PubMed ID: 8231992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-pass versus aberrometric modulation transfer function in green light.
    Rodríguez P; Navarro R
    J Biomed Opt; 2007; 12(4):044018. PubMed ID: 17867822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.