These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17487161)
1. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. McDonald L; Beynon RJ Nat Protoc; 2006; 1(4):1790-8. PubMed ID: 17487161 [TBL] [Abstract][Full Text] [Related]
2. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Staes A; Van Damme P; Helsens K; Demol H; Vandekerckhove J; Gevaert K Proteomics; 2008 Apr; 8(7):1362-70. PubMed ID: 18318009 [TBL] [Abstract][Full Text] [Related]
3. Protein processing characterized by a gel-free proteomics approach. Van Damme P; Impens F; Vandekerckhove J; Gevaert K Methods Mol Biol; 2008; 484():245-62. PubMed ID: 18592184 [TBL] [Abstract][Full Text] [Related]
4. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS). Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129 [TBL] [Abstract][Full Text] [Related]
5. Identification of proteolytic cleavage sites by quantitative proteomics. Enoksson M; Li J; Ivancic MM; Timmer JC; Wildfang E; Eroshkin A; Salvesen GS; Tao WA J Proteome Res; 2007 Jul; 6(7):2850-8. PubMed ID: 17547438 [TBL] [Abstract][Full Text] [Related]
6. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
7. Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase. Perrier J; Durand A; Giardina T; Puigserver A Biochimie; 2005 Aug; 87(8):673-85. PubMed ID: 15927344 [TBL] [Abstract][Full Text] [Related]
8. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method. Zhang X; Ye J; Engholm-Keller K; Højrup P Proteomics; 2011 Jan; 11(1):81-93. PubMed ID: 21182196 [TBL] [Abstract][Full Text] [Related]
9. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115 [TBL] [Abstract][Full Text] [Related]
10. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390 [TBL] [Abstract][Full Text] [Related]
11. A method for selective isolation of the amino-terminal peptide from alpha-amino-blocked proteins. Akiyama TH; Sasagawa T; Suzuki M; Titani K Anal Biochem; 1994 Oct; 222(1):210-6. PubMed ID: 7856851 [TBL] [Abstract][Full Text] [Related]
12. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Shen PT; Hsu JL; Chen SH Anal Chem; 2007 Dec; 79(24):9520-30. PubMed ID: 18001127 [TBL] [Abstract][Full Text] [Related]
13. A method for N-terminal de novo sequence analysis of proteins by matrix-assisted laser desorption/ionization mass spectrometry. Kuyama H; Sonomura K; Nishimura O; Tsunasawa S Anal Biochem; 2008 Sep; 380(2):291-6. PubMed ID: 18577371 [TBL] [Abstract][Full Text] [Related]
15. Application of a combined weak cation-exchange/crown ether column: first demonstrations of a versatile tool for proteome subselection. Tuytten R; Ruttens B; Gheysen K; Sandra K; De Cremer K; Vlieghe D; Van Landuyt N; Thomas G; Martins JC; Sandra P; Kas K; Verleysen K Anal Chem; 2009 Apr; 81(7):2456-69. PubMed ID: 19275152 [TBL] [Abstract][Full Text] [Related]
16. Specific isolation of N-terminal fragments from proteins and their high-fidelity de novo sequencing. Yamaguchi M; Obama T; Kuyama H; Nakayama D; Ando E; Okamura TA; Ueyama N; Nakazawa T; Norioka S; Nishimura O; Tsunasawa S Rapid Commun Mass Spectrom; 2007; 21(20):3329-36. PubMed ID: 17879392 [TBL] [Abstract][Full Text] [Related]
18. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136 [TBL] [Abstract][Full Text] [Related]
19. Selective isolation of N-terminal peptides from proteins and their de novo sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without regard to unblocking or blocking of N-terminal amino acids. Yamaguchi M; Nakayama D; Shima K; Kuyama H; Ando E; Okamura TA; Ueyama N; Nakazawa T; Norioka S; Nishimura O; Tsunasawa S Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3313-9. PubMed ID: 18821723 [TBL] [Abstract][Full Text] [Related]
20. A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. Zhang Q; Qian WJ; Knyushko TV; Clauss TR; Purvine SO; Moore RJ; Sacksteder CA; Chin MH; Smith DJ; Camp DG; Bigelow DJ; Smith RD J Proteome Res; 2007 Jun; 6(6):2257-68. PubMed ID: 17497906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]