BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17487554)

  • 1. Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86.
    Basu A; Phale PS
    Biodegradation; 2008 Feb; 19(1):83-92. PubMed ID: 17487554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86.
    Basu A; Phale PS
    FEMS Microbiol Lett; 2006 Jun; 259(2):311-6. PubMed ID: 16734795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements.
    Basu A; Das D; Bapat P; Wangikar PP; Phale PS
    Microbiol Res; 2009; 164(4):429-37. PubMed ID: 17467253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86.
    Basu A; Dixit SS; Phale PS
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):579-85. PubMed ID: 12687299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.
    Basu A; Shrivastava R; Basu B; Apte SK; Phale PS
    J Bacteriol; 2007 Nov; 189(21):7556-62. PubMed ID: 17827293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of indigenous NAH plasmid of naphthalene degrading Pseudomonas putida PpG7 strain implicated in limonin degradation.
    Ghosh M; Ganguli A; Mallik M
    J Microbiol; 2006 Oct; 44(5):473-9. PubMed ID: 17082740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.
    Nigam A; Phale PS; Wangikar PP
    Bioresour Technol; 2012 Jun; 114():484-91. PubMed ID: 22494573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86.
    Mahajan MC; Phale PS; Vaidyanathan CS
    Arch Microbiol; 1994; 161(5):425-33. PubMed ID: 8042906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 15. [Cloning of genes degrading 3-chlorobenzoate from Pseudomonas putida strain 87].
    Kulakova AN; Kulakov LA; Boronin AM
    Genetika; 1991 Oct; 27(10):1697-704. PubMed ID: 1778448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Degradation of phenanthrene by mutant strains--naphthalene degraders].
    Kosheleva IA; Balasova NV; Izmalkova TIu; Filonov AE; Sokolov SL; Slepen'kin AV; Boronin AM
    Mikrobiologiia; 2000; 69(6):783-9. PubMed ID: 11195577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols.
    Ouyang SP; Liu Q; Sun SY; Chen JC; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):246-50. PubMed ID: 17826856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugative transfer of the IncP-7 carbazole degradative plasmid, pCAR1, in river water samples.
    Shintani M; Fukushima N; Tezuka M; Yamane H; Nojiri H
    Biotechnol Lett; 2008 Jan; 30(1):117-22. PubMed ID: 17851640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.