BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17487972)

  • 1. Effects of additives on the thermostability of chloroperoxidase.
    Zhi L; Jiang Y; Wang Y; Hu M; Li S; Ma Y
    Biotechnol Prog; 2007; 23(3):729-33. PubMed ID: 17487972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deactivation of chloroperoxidase by monosaccharides (D-glucose, D-galactose, and D-xylose).
    Jin R; Li C; Zhi L; Jiang Y; Hu M; Li S; Zhai Q
    Carbohydr Res; 2013 Apr; 370():72-5. PubMed ID: 23454136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New reaction system for hydrocarbon oxidation by chloroperoxidase.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 May; 94(1):189-92. PubMed ID: 16276530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and stability of chloroperoxidase in the presence of small quantities of polysaccharides: a catalytically favorable conformation was induced.
    Li C; Wang L; Jiang Y; Hu M; Li S; Zhai Q
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1691-707. PubMed ID: 21947712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes.
    Zhang LH; Bai CH; Wang YS; Jiang YC; Hu MC; Li SN; Zhai QG
    Biotechnol Lett; 2009 Aug; 31(8):1269-72. PubMed ID: 19404743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic performance and thermostability of chloroperoxidase in reverse micelle: achievement of a catalytically favorable enzyme conformation.
    Wang Y; Wu J; Ru X; Jiang Y; Hu M; Li S; Zhai Q
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):717-24. PubMed ID: 20803346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pre-freeze incubation of human red blood cells with various sugars on postthaw recovery when using a dextran-rapid cooling protocol.
    Quan GB; Han Y; Liu MX; Gao F
    Cryobiology; 2009 Dec; 59(3):258-67. PubMed ID: 19665011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions.
    Terrés E; Montiel M; Le Borgne S; Torres E
    Biotechnol Lett; 2008 Jan; 30(1):173-9. PubMed ID: 17876536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications.
    Spreti N; Germani R; Incani A; Savelli G
    Biotechnol Prog; 2004; 20(1):96-101. PubMed ID: 14763829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of interface-binding chloroperoxidase for interfacial biotransformation.
    Narayanan R; Zhu G; Wang P
    J Biotechnol; 2007 Jan; 128(1):86-92. PubMed ID: 17157403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene.
    Zhu G; Wang P
    J Biotechnol; 2005 May; 117(2):195-202. PubMed ID: 15823408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial secretome analysis of Caldariomyces fumago reveals extracellular production of the CPO co-substrate H
    Buchhaupt M; Lintz K; Hüttmann S; Schrader J
    World J Microbiol Biotechnol; 2018 Jan; 34(2):24. PubMed ID: 29322262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promotion of activity and thermal stability of chloroperoxidase by trace amount of metal ions (M2+/M3+).
    Li H; Gao J; Wang L; Li X; Jiang Y; Hu M; Li S; Zhai Q
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2338-47. PubMed ID: 24363219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved operational stability of chloroperoxidase through use of antioxidants.
    Grey CE; Rundbäck F; Adlercreutz P
    J Biotechnol; 2008 Jun; 135(2):196-201. PubMed ID: 18479771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability.
    Liu Y; Zhang Y; Li X; Yuan Q; Liang H
    Chem Commun (Camb); 2017 Mar; 53(22):3216-3219. PubMed ID: 28251198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caldariomyces fumago DSM1256 Contains Two Chloroperoxidase Genes, Both Encoding Secreted and Active Enzymes.
    Buchhaupt M; Hüttmann S; Sachs CC; Bormann S; Hannappel A; Schrader J
    J Mol Microbiol Biotechnol; 2015; 25(4):237-43. PubMed ID: 26137931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of lignin peroxidase in organic media by reversed micelles.
    Kimura M; Michizoe J; Oakazaki SY; Furusaki S; Goto M; Tanaka H; Wariishi H
    Biotechnol Bioeng; 2004 Nov; 88(4):495-501. PubMed ID: 15459910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The improvement of chloroperoxidase activities in the presence of ammonium salts and cationic surfactants.
    Ru X; Wu J; Guo H; Jiang Y; Hu M; Zhai Q; Li S
    Biotechnol Prog; 2010; 26(4):1024-8. PubMed ID: 20205260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance.
    Hofrichter M; Ullrich R
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):276-88. PubMed ID: 16628447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.