These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17487972)

  • 21. Opposing effects of two osmolytes--trehalose and glycerol--on thermal inactivation of rabbit muscle 6-phosphofructo-1-kinase.
    Faber-Barata J; Sola-Penna M
    Mol Cell Biochem; 2005 Jan; 269(1-2):203-7. PubMed ID: 15786733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and stability studies on the chloroperoxidase complexes in presence of tert-butyl hydroperoxide.
    Toti P; Petri A; Gambicorti T; Osman AM; Bauer C
    Biophys Chem; 2005 Feb; 113(2):105-13. PubMed ID: 15617816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example.
    Kaup BA; Ehrich K; Pescheck M; Schrader J
    Biotechnol Bioeng; 2008 Feb; 99(3):491-8. PubMed ID: 17994590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose.
    James S; McManus JJ
    J Phys Chem B; 2012 Aug; 116(34):10182-8. PubMed ID: 22909409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. White mutants of chloroperoxidase-secreting Caldariomyces fumago as superior production strains, revealing an interaction between pigmentation and enzyme secretion.
    Buchhaupt M; Hüttmann S; Schrader J
    Appl Environ Microbiol; 2012 Aug; 78(16):5923-5. PubMed ID: 22636011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars?
    Sola-Penna M; Meyer-Fernandes JR
    Arch Biochem Biophys; 1998 Dec; 360(1):10-4. PubMed ID: 9826423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-solvent effects on structure and function properties of savinase: solvent-induced thermal stabilization.
    Nasiripourdori A; Naderi-Manesh H; Ranjbar B; Khajeh K
    Int J Biol Macromol; 2009 May; 44(4):311-5. PubMed ID: 18955077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp. REN-21 in aqueous solutions and water-in-oil microemulsions.
    Rodakiewicz-Nowak J; Ito M
    J Colloid Interface Sci; 2005 Apr; 284(2):674-9. PubMed ID: 15780309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors.
    de Hoog HM; Nallani M; Cornelissen JJ; Rowan AE; Nolte RJ; Arends IW
    Org Biomol Chem; 2009 Nov; 7(22):4604-10. PubMed ID: 19865695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detoxification of sulfur mustard by enzyme-catalyzed oxidation using chloroperoxidase.
    Popiel S; Nawała J
    Enzyme Microb Technol; 2013 Oct; 53(5):295-301. PubMed ID: 24034427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media.
    van de Velde F; Bakker M; van Rantwijk F; Sheldon RA
    Biotechnol Bioeng; 2001 Mar; 72(5):523-9. PubMed ID: 11460242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paramagnetic nuclear magnetic resonance relaxation and molecular mechanics studies of the chloroperoxidase-indole complex: insights into the mechanism of chloroperoxidase-catalyzed regioselective oxidation of indole.
    Zhang R; He Q; Chatfield D; Wang X
    Biochemistry; 2013 May; 52(21):3688-701. PubMed ID: 23634952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of activity and stability of chloroperoxidase by chemical modification.
    Liu JZ; Wang M
    BMC Biotechnol; 2007 May; 7():23. PubMed ID: 17511866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin.
    Pazhang M; Khajeh K; Ranjbar B; Hosseinkhani S
    J Biotechnol; 2006 Dec; 127(1):45-53. PubMed ID: 16860424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of sucrose and trehalose on stability, kinetic properties, and thermal aggregation of firefly luciferase.
    Rasouli S; Hosseinkhani S; Yaghmaei P; Ebrahim-Habibi A
    Appl Biochem Biotechnol; 2011 Sep; 165(2):572-82. PubMed ID: 21617898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds.
    Longoria A; Tinoco R; Vázquez-Duhalt R
    Chemosphere; 2008 Jun; 72(3):485-90. PubMed ID: 18439646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. C-terminal propeptide of the Caldariomyces fumago chloroperoxidase: an intramolecular chaperone?
    Conesa A; Weelink G; van den Hondel CA; Punt PJ
    FEBS Lett; 2001 Aug; 503(2-3):117-20. PubMed ID: 11513866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Enhanced storage stability of recombinant enzyme preparation of alpha-CGTase from Paenibacillus macerans by chemical additives].
    Zheng X; Wu D; Li Z; Chen J; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):185-95. PubMed ID: 21650042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Over-expression of chloroperoxidase in Caldariomyces fumago.
    Buchhaupt M; Ehrich K; Hüttmann S; Guder J; Schrader J
    Biotechnol Lett; 2011 Nov; 33(11):2225-31. PubMed ID: 21735258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the deglycosylation on the structure and activity of chloroperoxidase: Molecular dynamics simulation approach.
    Ghorbani Sangoli M; Housaindokht MR; Bozorgmehr MR
    J Mol Graph Model; 2020 Jun; 97():107570. PubMed ID: 32097885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.