BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17488012)

  • 1. Substrate- and isoform-specific dioxygen complexes of nitric oxide synthase.
    Li D; Kabir M; Stuehr DJ; Rousseau DL; Yeh SR
    J Am Chem Soc; 2007 May; 129(21):6943-51. PubMed ID: 17488012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates.
    Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ
    FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-protein interactions in nitric oxide synthase.
    Rousseau DL; Li D; Couture M; Yeh SR
    J Inorg Biochem; 2005 Jan; 99(1):306-23. PubMed ID: 15598509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between substrate analogues and heme ligands in nitric oxide synthase.
    Wang J; Stuehr DJ; Rousseau DL
    Biochemistry; 1997 Apr; 36(15):4595-606. PubMed ID: 9109669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENDOR spectroscopic evidence for the position and structure of NG-hydroxy-L-arginine bound to holo-neuronal nitric oxide synthase.
    Tierney DL; Huang H; Martasek P; Masters BS; Silverman RB; Hoffman BM
    Biochemistry; 1999 Mar; 38(12):3704-10. PubMed ID: 10090758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative nitric oxide-producing substrates for NO synthases.
    Mansuy D; Boucher JL
    Free Radic Biol Med; 2004 Oct; 37(8):1105-21. PubMed ID: 15451052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase.
    Kabir M; Sudhamsu J; Crane BR; Yeh SR; Rousseau DL
    Biochemistry; 2008 Nov; 47(47):12389-97. PubMed ID: 18956884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by L-arginine, tetrahydrobiopterin, and thiol.
    Berka V; Wang LH; Tsai AL
    Biochemistry; 2008 Jan; 47(1):405-20. PubMed ID: 18052254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin.
    Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D
    Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature stabilization and spectroscopic characterization of the dioxygen complex of the ferrous neuronal nitric oxide synthase oxygenase domain.
    Ledbetter AP; McMillan K; Roman LJ; Masters BS; Dawson JH; Sono M
    Biochemistry; 1999 Jun; 38(25):8014-21. PubMed ID: 10387045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of the flavin semiquinone of nitric oxide synthase in the oxygenation of arginine to NG-hydroxyarginine, the first step of nitric oxide synthesis.
    Witteveen CF; Giovanelli J; Yim MB; Gachhui R; Stuehr DJ; Kaufman S
    Biochem Biophys Res Commun; 1998 Sep; 250(1):36-42. PubMed ID: 9735327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate and substrate analog binding to endothelial nitric oxide synthase: electron paramagnetic resonance as an isoform-specific probe of the binding mode of substrate analogs.
    Salerno JC; Martásek P; Williams RF; Masters BS
    Biochemistry; 1997 Sep; 36(39):11821-7. PubMed ID: 9305973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.