These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 17488038)
1. DFT evidence for a stepwise mechanism in the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. Bietti M; Ercolani G; Salamone M J Org Chem; 2007 Jun; 72(12):4515-9. PubMed ID: 17488038 [TBL] [Abstract][Full Text] [Related]
2. The effect of ring substitution on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. A product and time-resolved kinetic study. Aureliano Antunes CS; Bietti M; Ercolani G; Lanzalunga O; Salamone M J Org Chem; 2005 May; 70(10):3884-91. PubMed ID: 15876075 [TBL] [Abstract][Full Text] [Related]
3. Solvent effects on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. A laser flash photolysis study. Bietti M; Salamone M J Org Chem; 2005 Dec; 70(25):10603-6. PubMed ID: 16323883 [TBL] [Abstract][Full Text] [Related]
4. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks. Cooksy AL; King HF; Richardson WH J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170 [TBL] [Abstract][Full Text] [Related]
5. Phenyl bridging in ring-substituted cumyloxyl radicals. A product and time-resolved kinetic study. Salamone M; Bietti M; Calcagni A; Gente G Org Lett; 2009 Jun; 11(11):2453-6. PubMed ID: 19397295 [TBL] [Abstract][Full Text] [Related]
6. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378 [TBL] [Abstract][Full Text] [Related]
7. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
8. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals. da Silva G; Bozzelli JW J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of 1,3-migration in allylperoxyl radicals: computational evidence for the formation of a loosely bound radical-dioxygen complex. Olivella S; Solé A J Am Chem Soc; 2003 Sep; 125(35):10641-50. PubMed ID: 12940748 [TBL] [Abstract][Full Text] [Related]
10. The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms. Alder RW; East SP; Harvey JN; Oakley MT J Am Chem Soc; 2003 May; 125(18):5375-87. PubMed ID: 12720451 [TBL] [Abstract][Full Text] [Related]
11. PCM study of the solvent and substituent effects on the conformers, intramolecular hydrogen bonds and bond dissociation enthalpies of 2-substituted phenols. Lithoxoidou AT; Bakalbassis EG J Phys Chem A; 2005 Jan; 109(2):366-77. PubMed ID: 16833355 [TBL] [Abstract][Full Text] [Related]
12. Variational analysis of the phenyl + O2 and phenoxy + O reactions. da Silva G; Bozzelli JW J Phys Chem A; 2008 Apr; 112(16):3566-75. PubMed ID: 18348555 [TBL] [Abstract][Full Text] [Related]
13. Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations. Baciocchi E; Del Giacco T; Lanzalunga O; Mencarelli P; Procacci B J Org Chem; 2008 Aug; 73(15):5675-82. PubMed ID: 18578497 [TBL] [Abstract][Full Text] [Related]
14. Mapping the potential energy surface of the tolylcarbene rearrangement in the inner phase of a hemicarcerand. Kerdelhué JL; Langenwalter KJ; Warmuth R J Am Chem Soc; 2003 Jan; 125(4):973-86. PubMed ID: 12537496 [TBL] [Abstract][Full Text] [Related]
15. Oxygen acidity of ring methoxylated 1,1-diarylalkanol radical cations bearing alpha-cyclopropyl groups. The competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals. Bietti M; Fiorentini S; Pato IP; Salamone M J Org Chem; 2006 Apr; 71(8):3167-75. PubMed ID: 16599615 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the methoxy carbonyl radical formed via photolysis of methyl chloroformate at 193.3 nm. Bell MJ; Lau KC; Krisch MJ; Bennett DI; Butler LJ; Weinhold F J Phys Chem A; 2007 Mar; 111(10):1762-70. PubMed ID: 17309241 [TBL] [Abstract][Full Text] [Related]
17. Density functional theory predicts the barriers for radical fragmentation in solution. Lorance ED; Hendrickson K; Gould IR J Org Chem; 2005 Mar; 70(6):2014-20. PubMed ID: 15760181 [TBL] [Abstract][Full Text] [Related]
18. Energetics of cresols and of methylphenoxyl radicals. Richard LS; Bernardes CE; Diogo HP; Leal JP; da Piedade ME J Phys Chem A; 2007 Sep; 111(35):8741-8. PubMed ID: 17691757 [TBL] [Abstract][Full Text] [Related]
19. A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene. Liu J; Mandel S; Hadad CM; Platz MS J Org Chem; 2004 Dec; 69(25):8583-93. PubMed ID: 15575733 [TBL] [Abstract][Full Text] [Related]
20. McLafferty rearrangement of the radical cations of butanal and 3-fluorobutanal: a theoretical investigation of the concerted and stepwise mechanisms. Norberg D; Salhi-Benachenhou N J Comput Chem; 2008 Feb; 29(3):392-406. PubMed ID: 17607719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]