BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17488058)

  • 1. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels.
    Khodakov AY; Chu W; Fongarland P
    Chem Rev; 2007 May; 107(5):1692-744. PubMed ID: 17488058
    [No Abstract]   [Full Text] [Related]  

  • 2. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.
    Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D
    J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts.
    Sartipi S; Alberts M; Meijerink MJ; Keller TC; Pérez-Ramírez J; Gascon J; Kapteijn F
    ChemSusChem; 2013 Sep; 6(9):1646-50. PubMed ID: 23765635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis.
    Jean-Marie A; Griboval-Constant A; Khodakov AY; Monflier E; Diehl F
    Chem Commun (Camb); 2011 Oct; 47(38):10767-9. PubMed ID: 21874176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer-Tropsch catalysts from surface science to industrial application.
    Oosterbeek H
    Phys Chem Chem Phys; 2007 Jul; 9(27):3570-6. PubMed ID: 17612722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes.
    Kunkes EL; Simonetti DA; West RM; Serrano-Ruiz JC; Gärtner CA; Dumesic JA
    Science; 2008 Oct; 322(5900):417-21. PubMed ID: 18801970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst.
    Xiao CX; Cai ZP; Wang T; Kou Y; Yan N
    Angew Chem Int Ed Engl; 2008; 47(4):746-9. PubMed ID: 18067111
    [No Abstract]   [Full Text] [Related]  

  • 9. Catalytic strategies for changing the energy content and achieving C--C coupling in biomass-derived oxygenated hydrocarbons.
    Simonetti DA; Dumesic JA
    ChemSusChem; 2008; 1(8-9):725-33. PubMed ID: 18683271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Weak Surface Modification on Co/SiO2 Catalyst for Fischer-Tropsch Reaction.
    Ning W; Shen H; Jin Y; Yang X
    PLoS One; 2015; 10(5):e0124228. PubMed ID: 25938725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The abiotic formation of hydrocarbons from dissolved CO2 under hydrothermal conditions with cobalt-bearing magnetite.
    Ji F; Zhou H; Yang Q
    Orig Life Evol Biosph; 2008 Apr; 38(2):117-25. PubMed ID: 18288587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.
    Cheng K; Zhang L; Kang J; Peng X; Zhang Q; Wang Y
    Chemistry; 2015 Jan; 21(5):1928-37. PubMed ID: 25424473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts.
    Bezemer GL; Bitter JH; Kuipers HP; Oosterbeek H; Holewijn JE; Xu X; Kapteijn F; van Dillen AJ; de Jong KP
    J Am Chem Soc; 2006 Mar; 128(12):3956-64. PubMed ID: 16551103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion.
    Zhao YH; Sun K; Ma X; Liu J; Sun D; Su HY; Li WX
    Angew Chem Int Ed Engl; 2011 May; 50(23):5335-8. PubMed ID: 21557417
    [No Abstract]   [Full Text] [Related]  

  • 15. A time-resolved in situ quick-XAS investigation of thermal activation of Fischer-Tropsch silica-supported cobalt catalysts.
    Hong J; Marceau E; Khodakov AY; Griboval-Constant A; La Fontaine C; Briois V
    Chemistry; 2012 Mar; 18(10):2802-5. PubMed ID: 22307946
    [No Abstract]   [Full Text] [Related]  

  • 16. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel.
    Kang J; Zhang S; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt-Containing Dispersion Catalysts for Three-Phase Fischer-Tropsch Synthesis.
    Maximov AL; Kulikova MV; Dementyeva OS; Ponomareva AK
    Front Chem; 2020; 8():567848. PubMed ID: 33304880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry. Making fuels from biomass.
    Rostrup-Nielsen JR
    Science; 2005 Jun; 308(5727):1421-2. PubMed ID: 15933189
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism and microkinetics of the Fischer-Tropsch reaction.
    van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts.
    du Plessis HE; Forbes RP; Barnard W; Erasmus WJ; Steuwer A
    Phys Chem Chem Phys; 2013 Jul; 15(28):11640-5. PubMed ID: 23752408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.