These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17488079)

  • 41. The role of activity coefficients in bioreaction equilibria: thermodynamics of methyl ferulate hydrolysis.
    Hoffmann P; Voges M; Held C; Sadowski G
    Biophys Chem; 2013; 173-174():21-30. PubMed ID: 23485130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The tightness contribution to the Brønsted alpha for hydride transfer between NAD+ analogues.
    Lee IS; Chow KH; Kreevoy MM
    J Am Chem Soc; 2002 Jul; 124(26):7755-61. PubMed ID: 12083929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reinterpretation of the Brønsted alpha for redox reactions based on the effect of substituents on hydride transfer reaction rates between NAD+ analogues.
    Lee IS; Ji YR; Jeoung EH
    J Phys Chem A; 2006 Mar; 110(11):3875-81. PubMed ID: 16539408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron-transfer properties of short-lived N-oxyl radicals. Kinetic study of the reactions of benzotriazole-N-oxyl radicals with ferrocenes. Comparison with the phthalimide-N-oxyl radical.
    Baciocchi E; Bietti M; Di Fusco M; Lanzalunga O; Raponi D
    J Org Chem; 2009 Aug; 74(15):5576-83. PubMed ID: 19522470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
    Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gas-phase thermochemical properties of the damaged base O(6)-methylguanine versus adenine and guanine.
    Zhachkina A; Liu M; Sun X; Amegayibor FS; Lee JK
    J Org Chem; 2009 Oct; 74(19):7429-40. PubMed ID: 19731957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic and thermodynamic barriers to carbon and oxygen alkylation of phenol and phenoxide ion by the 1-(4-methoxyphenyl)ethyl carbocation.
    Tsuji Y; Toteva MM; Garth HA; Richard JP
    J Am Chem Soc; 2003 Dec; 125(50):15455-65. PubMed ID: 14664591
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation and stability of enolates of acetamide and acetate anion: an Eigen plot for proton transfer at alpha-carbonyl carbon.
    Richard JP; Williams G; O'Donoghue AC; Amyes TL
    J Am Chem Soc; 2002 Mar; 124(12):2957-68. PubMed ID: 11902887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intramolecular hemiacetals. The acid-base-catalyzed ring-chain interconversion of 2-substituted 2-hydroxy-4,4-dimethylmorpholinium cations in aqueous solution.
    Sørensen PE; McClelland RA; Gandour RD
    Acta Chem Scand (Cph); 1991 Jul; 45(6):558-66. PubMed ID: 1764330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ring-opening kinetics of the D-pentofuranuronic acids.
    Wu J; Serianni AS
    Carbohydr Res; 1991 Apr; 211(2):207-17. PubMed ID: 1769014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How Acidic Is Carbonic Acid?
    Pines D; Ditkovich J; Mukra T; Miller Y; Kiefer PM; Daschakraborty S; Hynes JT; Pines E
    J Phys Chem B; 2016 Mar; 120(9):2440-51. PubMed ID: 26862781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon Acidity in Enzyme Active Sites.
    Toney MD
    Front Bioeng Biotechnol; 2019; 7():25. PubMed ID: 30838206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acid-Catalyzed Hydration of anti-Sesquinorbornene.
    Slebocka-Tilk H; Brown RS
    J Org Chem; 1996 Nov; 61(23):8079-8082. PubMed ID: 11667792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substituent effects on the acidity of weak acids. 1. Bicyclo[2.2.2]octane-1-carboxylic acids and bicyclo[1.1.1]pentane-1-carboxylic acids.
    Wiberg KB
    J Org Chem; 2002 Mar; 67(5):1613-7. PubMed ID: 11871894
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics and mechanism of ionization of the carbon acids 4'-substituted 2-phenyl-1,3-indandiones.
    Stella VJ; Gish R
    J Pharm Sci; 1979 Aug; 68(8):1047-9. PubMed ID: 39157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of the electrophilic reactivities of Zn2+ and acetic acid as catalysts of enolization: imperatives for enzymatic catalysis of proton transfer at carbon.
    Crugeiras J; Richard JP
    J Am Chem Soc; 2004 Apr; 126(16):5164-73. PubMed ID: 15099099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acid-catalyzed rearrangements in arenes: interconversions in the quaterphenyl series.
    Skraba-Joiner SL; Holt CJ; Johnson RP
    Beilstein J Org Chem; 2019; 15():2655-2663. PubMed ID: 31807200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Solvent and Protonation State on Rotational Barriers in [s]-Triazines.
    Claton LE; Pan H; Simanek EE
    J Org Chem; 2024 Apr; 89(8):5480-5484. PubMed ID: 38591934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of Acid Decomposition of Dithiocarbamates. 2. Efficiency of the Intramolecular General Acid Catalysis.
    Humeres E; Debacher NA; Sierra MM
    J Org Chem; 1999 Mar; 64(6):1807-1813. PubMed ID: 11674268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.