These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 17488089)
1. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Liu K; Peterson KL; Raboy V J Agric Food Chem; 2007 May; 55(11):4453-60. PubMed ID: 17488089 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Persson DP; Hansen TH; Laursen KH; Schjoerring JK; Husted S Metallomics; 2009 Sep; 1(5):418-26. PubMed ID: 21305146 [TBL] [Abstract][Full Text] [Related]
3. Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. Ruibal-Mendieta NL; Delacroix DL; Mignolet E; Pycke JM; Marques C; Rozenberg R; Petitjean G; Habib-Jiwan JL; Meurens M; Quetin-Leclercq J; Delzenne NM; Larondelle Y J Agric Food Chem; 2005 Apr; 53(7):2751-9. PubMed ID: 15796621 [TBL] [Abstract][Full Text] [Related]
4. Effect of graded levels of iron, zinc, and copper supplementation in diets with low-phytate or normal barley on growth performance, bone characteristics, hematocrit volume, and zinc and copper balance of young swine1. Veum TL; Ledoux DR; Shannon MC; Raboy V J Anim Sci; 2009 Aug; 87(8):2625-34. PubMed ID: 19359503 [TBL] [Abstract][Full Text] [Related]
5. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model. Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220 [TBL] [Abstract][Full Text] [Related]
6. Compositional equivalence of barleys differing only in low- and normal-phytate levels. Moreau RA; Bregitzer P; Liu K; Hicks KB J Agric Food Chem; 2012 Jul; 60(26):6493-8. PubMed ID: 22681545 [TBL] [Abstract][Full Text] [Related]
7. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine. Veum TL; Raboy V J Anim Sci; 2016 Mar; 94(3):1000-11. PubMed ID: 27065262 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus composition of manure from swine fed low-phytate grains: evidence for hydrolysis in the animal. Leytem AB; Turner BL; Thacker PA J Environ Qual; 2004; 33(6):2380-3. PubMed ID: 15537962 [TBL] [Abstract][Full Text] [Related]
9. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. Dai F; Qiu L; Xu Y; Cai S; Qiu B; Zhang G J Agric Food Chem; 2010 Nov; 58(22):11821-4. PubMed ID: 21047062 [TBL] [Abstract][Full Text] [Related]
10. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Dorsch JA; Cook A; Young KA; Anderson JM; Bauman AT; Volkmann CJ; Murthy PP; Raboy V Phytochemistry; 2003 Mar; 62(5):691-706. PubMed ID: 12620321 [TBL] [Abstract][Full Text] [Related]
11. Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific, filial determinant of seed total phosphorus. Raboy V; Cichy K; Peterson K; Reichman S; Sompong U; Srinives P; Saneoka H J Hered; 2014; 105(5):656-65. PubMed ID: 25080466 [TBL] [Abstract][Full Text] [Related]
12. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Davidsson L; Ziegler EE; Kastenmayer P; van Dael P; Barclay D Br J Nutr; 2004 Feb; 91(2):287-94. PubMed ID: 14756915 [TBL] [Abstract][Full Text] [Related]
13. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chen F; Dong J; Wang F; Wu F; Zhang G; Li G; Chen Z; Chen J; Wei K Chemosphere; 2007 May; 67(10):2082-8. PubMed ID: 17257649 [TBL] [Abstract][Full Text] [Related]
14. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains. Su D; Zhou L; Zhao Q; Pan G; Cheng F J Agric Food Chem; 2018 Feb; 66(7):1601-1611. PubMed ID: 29401375 [TBL] [Abstract][Full Text] [Related]
15. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Makokha AO; Oniang'o RK; Njoroge SM; Kamar OK Food Nutr Bull; 2002 Sep; 23(3 Suppl):241-5. PubMed ID: 12362804 [TBL] [Abstract][Full Text] [Related]
17. Concentrations of functional lipids in abraded fractions of hulless barley and effect of storage. Liu KS; Moreau RA J Food Sci; 2008 Sep; 73(7):C569-76. PubMed ID: 18803704 [TBL] [Abstract][Full Text] [Related]
18. Nutrient retention and growth performance of chicks given low-phytate conventional or hull-less barleys. Salarmoini M; Campbell GL; Rossnagel BG; Raboy V Br Poult Sci; 2008 May; 49(3):321-8. PubMed ID: 18568757 [TBL] [Abstract][Full Text] [Related]
19. Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Husted S; Mikkelsen BF; Jensen J; Nielsen NE Anal Bioanal Chem; 2004 Jan; 378(1):171-82. PubMed ID: 14551660 [TBL] [Abstract][Full Text] [Related]
20. Correlation analysis of mineral element contents and quality traits in milled rice (Oryza stavia L.). Jiang SL; Wu JG; Feng Y; Yang XE; Shi CH J Agric Food Chem; 2007 Nov; 55(23):9608-13. PubMed ID: 17937479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]