These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 17488114)
1. Minimum energy pathways for proton transfer between adjacent sites exposed to water. Friedman R; Fischer S; Nachliel E; Scheiner S; Gutman M J Phys Chem B; 2007 May; 111(21):6059-70. PubMed ID: 17488114 [TBL] [Abstract][Full Text] [Related]
2. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
3. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping. Xiang Y; Warshel A J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor. Riccardi D; König P; Guo H; Cui Q Biochemistry; 2008 Feb; 47(8):2369-78. PubMed ID: 18247480 [TBL] [Abstract][Full Text] [Related]
5. Direct ab initio dynamics calculations for rates and the kinetic isotope effects of multiproton transfer in ClONO2 + HCl --> HNO3 + Cl2 reactions with water clusters: breakdown of the rule of the geometric mean. Nam K; Kim Y J Chem Phys; 2009 Apr; 130(14):144310. PubMed ID: 19368448 [TBL] [Abstract][Full Text] [Related]
6. Reactive force fields for proton transfer dynamics. Lammers S; Lutz S; Meuwly M J Comput Chem; 2008 May; 29(7):1048-63. PubMed ID: 18072179 [TBL] [Abstract][Full Text] [Related]
7. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527 [TBL] [Abstract][Full Text] [Related]
8. Solvent effects in chemical processes. water-assisted proton transfer reaction of pterin in aqueous environment. Jaramillo P; Coutinho K; Canuto S J Phys Chem A; 2009 Nov; 113(45):12485-95. PubMed ID: 19754044 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of proton transfer between adjacent sites exposed to water. Mezer A; Friedman R; Noivirt O; Nachliel E; Gutman M J Phys Chem B; 2005 Jun; 109(22):11379-88. PubMed ID: 16852391 [TBL] [Abstract][Full Text] [Related]
10. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373 [TBL] [Abstract][Full Text] [Related]
11. The dynamics of proton transfer between adjacent sites. Gutman M; Nachliel E; Friedman R Photochem Photobiol Sci; 2006 Jun; 5(6):531-7. PubMed ID: 16761081 [TBL] [Abstract][Full Text] [Related]
12. Proton-transfer reactions in reaction center of photosynthetic bacteria Rhodobacter sphaeroides. Kaneko Y; Hayashi S; Ohmine I J Phys Chem B; 2009 Jul; 113(26):8993-9003. PubMed ID: 19496556 [TBL] [Abstract][Full Text] [Related]
13. A DFT-based theoretical study on the photophysics of 4-hydroxyacridine: single-water-mediated excited state proton transfer. Paul BK; Mahanta S; Singh RB; Guchhait N J Phys Chem A; 2010 Feb; 114(7):2618-27. PubMed ID: 20121061 [TBL] [Abstract][Full Text] [Related]
14. Quantum-chemical calculations of a long proton wire. Application of a harmonic model to analysis of the structure of an ionic defect in a water chain with an excess proton. Isaev AN J Phys Chem A; 2010 Feb; 114(5):2201-12. PubMed ID: 20085360 [TBL] [Abstract][Full Text] [Related]
15. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin. Sato Y; Hata M; Neya S; Hoshino T J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031 [TBL] [Abstract][Full Text] [Related]
16. Proton transfer from the inactive gas-phase nicotine structure to the bioactive aqueous-phase structure. Gaigeot MP; Cimas A; Seydou M; Kim JY; Lee S; Schermann JP J Am Chem Soc; 2010 Dec; 132(51):18067-77. PubMed ID: 21141855 [TBL] [Abstract][Full Text] [Related]
17. Catalytic role of calix[4]hydroquinone in acetone-water proton exchange: a quantum chemical study of proton transfer via keto-enol tautomerism. Zakharov M; Masunov AE; Dreuw A J Phys Chem A; 2008 Oct; 112(41):10405-12. PubMed ID: 18800781 [TBL] [Abstract][Full Text] [Related]
18. A computational study of the intramolecular deprotonation of a carbon acid in aqueous solution. Sharma R; Thorley M; McNamara JP; Watt CI; Burton NA Phys Chem Chem Phys; 2008 May; 10(18):2475-87. PubMed ID: 18446247 [TBL] [Abstract][Full Text] [Related]
19. Quantum and dynamical effects of proton donor-acceptor vibrational motion in nonadiabatic proton-coupled electron transfer reactions. Soudackov A; Hatcher E; Hammes-Schiffer S J Chem Phys; 2005 Jan; 122(1):14505. PubMed ID: 15638672 [TBL] [Abstract][Full Text] [Related]
20. Excited-state proton transfer in 7-hydroxy-4-methylcoumarin along a hydrogen-bonded water wire. Georgieva I; Trendafilova N; Aquino AJ; Lischka H J Phys Chem A; 2007 Jan; 111(1):127-35. PubMed ID: 17201395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]