BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1748819)

  • 1. Low catalase levels in the epidermis of patients with vitiligo.
    Schallreuter KU; Wood JM; Berger J
    J Invest Dermatol; 1991 Dec; 97(6):1081-5. PubMed ID: 1748819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hermansky-Pudlak syndrome in a Swiss population.
    Schallreuter KU; Frenk E; Wolfe LS; Witkop CJ; Wood JM
    Dermatology; 1993; 187(4):248-56. PubMed ID: 8274781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defects in antioxidant defense and calcium transport in the epidermis of xeroderma pigmentosum patients.
    Schallreuter KU; Pittelkow MR; Wood JM
    Arch Dermatol Res; 1991; 283(7):449-55. PubMed ID: 1801654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells.
    Schallreuter KU; Lemke KR; Hill HZ; Wood JM
    J Invest Dermatol; 1994 Dec; 103(6):820-4. PubMed ID: 7528241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical reduction in the human epidermis.
    Schallreuter KU; Wood JM
    Free Radic Biol Med; 1989; 6(5):519-32. PubMed ID: 2663665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased monoamine oxidase A activity in the epidermis of patients with vitiligo.
    Schallreuter KU; Wood JM; Pittelkow MR; Buttner G; Swanson N; Korner C; Ehrke C
    Arch Dermatol Res; 1996; 288(1):14-8. PubMed ID: 8750929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin.
    Sravani PV; Babu NK; Gopal KV; Rao GR; Rao AR; Moorthy B; Rao TR
    Indian J Dermatol Venereol Leprol; 2009; 75(3):268-71. PubMed ID: 19439879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo.
    Gavalas NG; Akhtar S; Gawkrodger DJ; Watson PF; Weetman AP; Kemp EH
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1586-91. PubMed ID: 16729966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo.
    Schallreuter KU; Rübsam K; Gibbons NC; Maitland DJ; Chavan B; Zothner C; Rokos H; Wood JM
    J Invest Dermatol; 2008 Apr; 128(4):808-15. PubMed ID: 17943184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic association of the catalase gene (CAT) with vitiligo susceptibility.
    Casp CB; She JX; McCormack WT
    Pigment Cell Res; 2002 Feb; 15(1):62-6. PubMed ID: 11837458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of heterogeneous single nucleotide polymorphisms in the catalase gene indicates structural changes in the enzyme active site, NADPH-binding and tetramerization domains: a genetic predisposition for an altered catalase in patients with vitiligo?
    Wood JM; Gibbons NC; Chavan B; Schallreuter KU
    Exp Dermatol; 2008 Apr; 17(4):366-71. PubMed ID: 18315617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Successful treatment of oxidative stress in vitiligo.
    Schallreuter KU
    Skin Pharmacol Appl Skin Physiol; 1999; 12(3):132-8. PubMed ID: 10393521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic evidence for epidermal H2O2/ONOO(-)-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS.
    Schallreuter KU; Salem MA; Holtz S; Panske A
    FASEB J; 2013 Aug; 27(8):3113-22. PubMed ID: 23629861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical reduction by thioredoxin reductase at the surface of normal and vitiliginous human keratinocytes.
    Schallreuter KU; Pittelkow MR; Wood JM
    J Invest Dermatol; 1986 Dec; 87(6):728-32. PubMed ID: 2431070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of tyrosinase in the vitiligo skin of human beings by a sensitive fluorometric method as well as by 14C(U)-L-tyrosine incorporation into melanin.
    Husain I; Vijayan E; Ramaiah A; Pasricha JS; Madan NC
    J Invest Dermatol; 1982 Mar; 78(3):243-52. PubMed ID: 6799584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-oxidant defence mechanism in vitiliginous skin increases with skin type.
    Briganti S; Caron-Schreinemachers AL; Picardo M; Westerhof W
    J Eur Acad Dermatol Venereol; 2012 Oct; 26(10):1212-9. PubMed ID: 22081894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tyrosinases of normal and diseased human skin (naevi, malignant melanoma, vitiligo).
    Voulot C; Ortonne JP
    Arch Dermatol Res (1975); 1975 Dec; 254(2):205-14. PubMed ID: 814859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalase gene promoter and 5'-untranslated region variants lead to altered gene expression and enzyme activity in vitiligo.
    Mansuri MS; Jadeja SD; Singh M; Laddha NC; Dwivedi M; Begum R
    Br J Dermatol; 2017 Dec; 177(6):1590-1600. PubMed ID: 28542879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evidence that halo in Sutton's naevus is not vitiligo.
    Schallreuter KU; Kothari S; Elwary S; Rokos H; Hasse S; Panske A
    Arch Dermatol Res; 2003 Nov; 295(6):223-8. PubMed ID: 14530988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin.
    Schallreuter KU; Pittelkow MP
    Arch Dermatol Res; 1988; 280(3):137-9. PubMed ID: 3377526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.