These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17488233)

  • 21. Biomaterials and scaffolds for ligament tissue engineering.
    Ge Z; Yang F; Goh JC; Ramakrishna S; Lee EH
    J Biomed Mater Res A; 2006 Jun; 77(3):639-52. PubMed ID: 16550538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of computationally designed scaffolds by low temperature 3D printing.
    Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E
    Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and evaluation of porous poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) hydroxyapatite composite scaffolds.
    Jing Xi ; Ling Zhang ; Zhenhu An Zheng ; Guoqiang Chen ; Yandao Gong ; Nanming Zhao ; Xiufang Zhang
    J Biomater Appl; 2008 Jan; 22(4):293-307. PubMed ID: 18089673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2.
    Fu YC; Nie H; Ho ML; Wang CK; Wang CH
    Biotechnol Bioeng; 2008 Mar; 99(4):996-1006. PubMed ID: 17879301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament-bone interface.
    Samavedi S; Olsen Horton C; Guelcher SA; Goldstein AS; Whittington AR
    Acta Biomater; 2011 Dec; 7(12):4131-8. PubMed ID: 21791254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone and cartilage tissue engineering.
    Boyan BD; Lohmann CH; Romero J; Schwartz Z
    Clin Plast Surg; 1999 Oct; 26(4):629-45, ix. PubMed ID: 10553218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
    Wu C
    Expert Rev Med Devices; 2009 May; 6(3):237-41. PubMed ID: 19419281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration.
    Whitlock PW; Smith TL; Poehling GG; Shilt JS; Van Dyke M
    Biomaterials; 2007 Oct; 28(29):4321-9. PubMed ID: 17610948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials.
    Kew SJ; Gwynne JH; Enea D; Abu-Rub M; Pandit A; Zeugolis D; Brooks RA; Rushton N; Best SM; Cameron RE
    Acta Biomater; 2011 Sep; 7(9):3237-47. PubMed ID: 21689792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities.
    Yan X; Yu C; Zhou X; Tang J; Zhao D
    Angew Chem Int Ed Engl; 2004 Nov; 43(44):5980-4. PubMed ID: 15547911
    [No Abstract]   [Full Text] [Related]  

  • 37. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore characteristics of bone substitute materials assessed by microcomputed tomography.
    Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H
    Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo.
    Lee JY; Choo JE; Choi YS; Park JB; Min DS; Lee SJ; Rhyu HK; Jo IH; Chung CP; Park YJ
    Biomaterials; 2007 Oct; 28(29):4257-67. PubMed ID: 17604098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.