These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17488495)
1. Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. Schramm G; Zapatka M; Eils R; König R BMC Bioinformatics; 2007 May; 8():149. PubMed ID: 17488495 [TBL] [Abstract][Full Text] [Related]
2. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms. König R; Schramm G; Oswald M; Seitz H; Sager S; Zapatka M; Reinelt G; Eils R BMC Bioinformatics; 2006 Mar; 7():119. PubMed ID: 16524469 [TBL] [Abstract][Full Text] [Related]
3. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. Gutierrez-Ríos RM; Freyre-Gonzalez JA; Resendis O; Collado-Vides J; Saier M; Gosset G BMC Microbiol; 2007 Jun; 7():53. PubMed ID: 17559662 [TBL] [Abstract][Full Text] [Related]
4. Transition of an Anaerobic Escherichia coli Culture to Aerobiosis: Balancing mRNA and Protein Levels in a Demand-Directed Dynamic Flux Balance Analysis. von Wulffen J; ; Sawodny O; Feuer R PLoS One; 2016; 11(7):e0158711. PubMed ID: 27384956 [TBL] [Abstract][Full Text] [Related]
5. Gene expression analysis on biochemical networks using the Potts spin model. König R; Eils R Bioinformatics; 2004 Jul; 20(10):1500-5. PubMed ID: 15231542 [TBL] [Abstract][Full Text] [Related]
6. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. Iuchi S; Weiner L J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748 [TBL] [Abstract][Full Text] [Related]
7. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli. Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992 [TBL] [Abstract][Full Text] [Related]
8. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase. Pin C; Rolfe MD; Muñoz-Cuevas M; Hinton JC; Peck MW; Walton NJ; Baranyi J BMC Syst Biol; 2009 Nov; 3():108. PubMed ID: 19917103 [TBL] [Abstract][Full Text] [Related]
9. Towards a systems level understanding of the oxygen response of Escherichia coli. Bettenbrock K; Bai H; Ederer M; Green J; Hellingwerf KJ; Holcombe M; Kunz S; Rolfe MD; Sanguinetti G; Sawodny O; Sharma P; Steinsiek S; Poole RK Adv Microb Physiol; 2014; 64():65-114. PubMed ID: 24797925 [TBL] [Abstract][Full Text] [Related]
10. A low-complexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli. Tack ILMM; Nimmegeers P; Akkermans S; Logist F; Van Impe JFM PLoS One; 2018; 13(8):e0202565. PubMed ID: 30157229 [TBL] [Abstract][Full Text] [Related]
11. Stability of metabolic correlations under changing environmental conditions in Escherichia coli--a systems approach. Szymanski J; Jozefczuk S; Nikoloski Z; Selbig J; Nikiforova V; Catchpole G; Willmitzer L PLoS One; 2009 Oct; 4(10):e7441. PubMed ID: 19829699 [TBL] [Abstract][Full Text] [Related]
12. Network topology-based detection of differential gene regulation and regulatory switches in cell metabolism and signaling. Piro RM; Wiesberg S; Schramm G; Rebel N; Oswald M; Eils R; Reinelt G; König R BMC Syst Biol; 2014 May; 8():56. PubMed ID: 24886210 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Kumar R; Shimizu K Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324 [TBL] [Abstract][Full Text] [Related]
14. Steady state analysis of the genetic regulatory network incorporating underlying molecular mechanisms for anaerobic metabolism in Escherichia coli. Srinivasan S; Venkatesh KV Mol Biosyst; 2014 Mar; 10(3):562-75. PubMed ID: 24402032 [TBL] [Abstract][Full Text] [Related]
15. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis. Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454 [TBL] [Abstract][Full Text] [Related]
16. Phenotype prediction in regulated metabolic networks. Kaleta C; Centler F; di Fenizio PS; Dittrich P BMC Syst Biol; 2008 Apr; 2():37. PubMed ID: 18439260 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale. Liu JK; O'Brien EJ; Lerman JA; Zengler K; Palsson BO; Feist AM BMC Syst Biol; 2014 Sep; 8():110. PubMed ID: 25227965 [TBL] [Abstract][Full Text] [Related]
18. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions. Kang A; Tan MH; Ling H; Chang MW Mol Biosyst; 2013 Feb; 9(2):285-95. PubMed ID: 23224080 [TBL] [Abstract][Full Text] [Related]
19. Analog regulation of metabolic demand. Sonnenschein N; Geertz M; Muskhelishvili G; Hütt MT BMC Syst Biol; 2011 Mar; 5():40. PubMed ID: 21406074 [TBL] [Abstract][Full Text] [Related]
20. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. Millard P; Smallbone K; Mendes P PLoS Comput Biol; 2017 Feb; 13(2):e1005396. PubMed ID: 28187134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]