BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17488813)

  • 1. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
    Zhang L; Sato Y; Hessa T; von Heijne G; Lee JK; Kodama I; Sakaguchi M; Uozumi N
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8263-8. PubMed ID: 17488813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes.
    Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y
    Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural organization of the voltage sensor in voltage-dependent potassium channels.
    Papazian DM; Silverman WR; Lin MC; Tiwari-Woodruff SK; Tang CY
    Novartis Found Symp; 2002; 245():178-90; discussion 190-2, 261-4. PubMed ID: 12027007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ; Neale EJ; Munsey TS; Bannister JP; Sivaprasadarao A
    Mol Membr Biol; 2012 Dec; 29(8):321-32. PubMed ID: 22881396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6.
    Sato Y; Sakaguchi M; Goshima S; Nakamura T; Uozumi N
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):60-5. PubMed ID: 11756658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion.
    Broomand A; Elinder F
    Neuron; 2008 Sep; 59(5):770-7. PubMed ID: 18786360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.
    Tiwari-Woodruff SK; Schulteis CT; Mock AF; Papazian DM
    Biophys J; 1997 Apr; 72(4):1489-500. PubMed ID: 9083655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear intramolecular interactions and voltage sensitivity of a KV1 family potassium channel from Polyorchis penicillatus (Eschscholtz 1829).
    Klassen TL; O'Mara ML; Redstone M; Spencer AN; Gallin WJ
    J Exp Biol; 2008 Nov; 211(Pt 21):3442-53. PubMed ID: 18931317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1.
    Sato Y; Sakaguchi M; Goshima S; Nakamura T; Uozumi N
    J Biol Chem; 2003 Apr; 278(15):13227-34. PubMed ID: 12556517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophobic element secures S4 voltage sensor in position in resting Shaker K+ channels.
    Yang YC; Own CJ; Kuo CC
    J Physiol; 2007 Aug; 582(Pt 3):1059-72. PubMed ID: 17412765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double gaps along Shaker S4 demonstrate omega currents at three different closed states.
    Gamal El-Din TM; Heldstab H; Lehmann C; Greeff NG
    Channels (Austin); 2010; 4(2):93-100. PubMed ID: 20009570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel.
    Lai HC; Grabe M; Jan YN; Jan LY
    Neuron; 2005 Aug; 47(3):395-406. PubMed ID: 16055063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid substitution within the S2 and S4 transmembrane segments in Shaker potassium channel modulates channel gating.
    Wang MH; Oh U; Rhee HI
    Biochem Biophys Res Commun; 2000 Sep; 275(3):720-4. PubMed ID: 10973789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from Polyorchis penicillatus.
    Sharmin N; Gallin WJ
    J Exp Biol; 2017 Feb; 220(Pt 3):469-477. PubMed ID: 27872215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane insertion of a potassium-channel voltage sensor.
    Hessa T; White SH; von Heijne G
    Science; 2005 Mar; 307(5714):1427. PubMed ID: 15681341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.
    Mishima E; Sato Y; Nanatani K; Hoshi N; Lee JK; Schiller N; von Heijne G; Sakaguchi M; Uozumi N
    Biochem J; 2016 Dec; 473(23):4361-4372. PubMed ID: 27694387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review).
    Latorre R; Muñoz F; González C; Cosmelli D
    Mol Membr Biol; 2003; 20(1):19-25. PubMed ID: 12745922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW; Vaid M; Rezazadeh S; Kwan DC; Kehl SJ; Fedida D
    J Gen Physiol; 2007 May; 129(5):437-55. PubMed ID: 17470663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The principle of gating charge movement in a voltage-dependent K+ channel.
    Jiang Y; Ruta V; Chen J; Lee A; MacKinnon R
    Nature; 2003 May; 423(6935):42-8. PubMed ID: 12721619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.