These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 17489244)

  • 1. Sensitivity of habitat network models to changes in maximum dispersal distance.
    Ortiz-Rodríguez DO; Guisan A; Van Strien MJ
    PLoS One; 2023; 18(11):e0293966. PubMed ID: 37930975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels.
    Zero VH; Barocas A; Jochimsen DM; Pelletier A; Giroux-Bougard X; Trumbo DR; Castillo JA; Evans Mack D; Linnell MA; Pigg RM; Hoisington-Lopez J; Spear SF; Murphy MA; Waits LP
    Front Genet; 2017; 8():81. PubMed ID: 28659969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting species occurrences with habitat network models.
    Ortiz-Rodríguez DO; Guisan A; Holderegger R; van Strien MJ
    Ecol Evol; 2019 Sep; 9(18):10457-10471. PubMed ID: 31624560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing of salmonid spawning sites in freshwater ecosystems: The potential of low-cost UAV data.
    Ponsioen L; Kapralova KH; Holm F; Hennig BD
    PLoS One; 2023; 18(8):e0290736. PubMed ID: 37643193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some (Fish Might) Like It Hot: Habitat Quality and Fish Growth from Past to Future Climates.
    Reeder WJ; Gariglio F; Carnie R; Tang C; Isaak D; Chen Q; Yu Z; McKean JA; Tonina D
    Sci Total Environ; 2021 Sep; 787():. PubMed ID: 34949897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size, connectivity and edge effects of stream habitats explain spatio-temporal variation in brown trout (
    Tamario C; Degerman E; Polic D; Tibblin P; Forsman A
    Proc Biol Sci; 2021 Oct; 288(1961):20211255. PubMed ID: 34666525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century.
    Donaldson L; Wilson RJ; Maclean IMD
    Biodivers Conserv; 2017; 26(3):527-552. PubMed ID: 32269427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis.
    Terui A; Miyazaki Y; Yoshioka A; Kaifu K; Matsuzaki SS; Washitani I
    Ecol Evol; 2014 Aug; 4(15):3004-14. PubMed ID: 25247058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential factors affecting survival differ by run-timing and location: linear mixed-effects models of Pacific salmonids (Oncorhynchus spp.) in the Klamath River, California.
    Quiñones RM; Holyoak M; Johnson ML; Moyle PB
    PLoS One; 2014; 9(5):e98392. PubMed ID: 24866173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss) across a complex riverscape.
    Falke JA; Dunham JB; Jordan CE; McNyset KM; Reeves GH
    PLoS One; 2013; 8(11):e79232. PubMed ID: 24265762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large river habitat complexity and productivity of Puget Sound Chinook salmon.
    Hall JE; Greene CM; Stefankiv O; Anderson JH; Timpane-Padgham B; Beechie TJ; Pess GR
    PLoS One; 2018; 13(11):e0205127. PubMed ID: 30383778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.
    Sloat MR; Reeves GH; Christiansen KR
    Glob Chang Biol; 2017 Feb; 23(2):604-620. PubMed ID: 27611839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.
    Quinn TP; Kinnison MT; Unwin MJ
    Genetica; 2001; 112-113():493-513. PubMed ID: 11838785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.
    Isaak DJ; Thurow RF; Rieman BE; Dunham JB
    Ecol Appl; 2007 Mar; 17(2):352-64. PubMed ID: 17489244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-dependent habitat selection of spawning Chinook salmon: broad-scale evidence and implications.
    Falcy MR
    J Anim Ecol; 2015 Mar; 84(2):545-53. PubMed ID: 25283166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers.
    Geist DR; Dauble DD
    Environ Manage; 1998 Sep; 22(5):655-69. PubMed ID: 9680535
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.