BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17489626)

  • 1. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?
    Villa A; Fan H; Wassenaar T; Mark AE
    J Phys Chem B; 2007 May; 111(21):6015-25. PubMed ID: 17489626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern protein force fields behave comparably in molecular dynamics simulations.
    Price DJ; Brooks CL
    J Comput Chem; 2002 Aug; 23(11):1045-57. PubMed ID: 12116391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents.
    Geerke DP; van Gunsteren WF
    Chemphyschem; 2006 Mar; 7(3):671-8. PubMed ID: 16514695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved nucleic acid parameter set for the GROMOS force field.
    Soares TA; Hünenberger PH; Kastenholz MA; Kräutler V; Lenz T; Lins RD; Oostenbrink C; van Gunsteren WF
    J Comput Chem; 2005 May; 26(7):725-37. PubMed ID: 15770662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z; Lin Z; Wang J; Liu H
    J Comput Chem; 2009 Mar; 30(4):645-60. PubMed ID: 18780355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation.
    Katagiri D; Fuji H; Neya S; Hoshino T
    J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins.
    Okur A; Strockbine B; Hornak V; Simmerling C
    J Comput Chem; 2003 Jan; 24(1):21-31. PubMed ID: 12483672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO.
    Duarte AM; van Mierlo CP; Hemminga MA
    J Phys Chem B; 2008 Jul; 112(29):8664-71. PubMed ID: 18582096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry.
    Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB
    J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing polar solvation dynamics in proteins: a molecular dynamics simulation analysis.
    Golosov AA; Karplus M
    J Phys Chem B; 2007 Feb; 111(6):1482-90. PubMed ID: 17249715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.
    Tong Y; Ji CG; Mei Y; Zhang JZ
    J Am Chem Soc; 2009 Jun; 131(24):8636-41. PubMed ID: 19485377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various implicit solvent models in molecular dynamics simulations of immunoglobulin G light chain dimer.
    Król M
    J Comput Chem; 2003 Apr; 24(5):531-46. PubMed ID: 12632469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation, dynamics, solvation and relative stabilities of selected beta-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field.
    Kräutler V; Müller M; Hünenberger PH
    Carbohydr Res; 2007 Oct; 342(14):2097-124. PubMed ID: 17573054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein flexibility: multiple molecular dynamics simulations of insulin chain B.
    Legge FS; Budi A; Treutlein H; Yarovsky I
    Biophys Chem; 2006 Jan; 119(2):146-57. PubMed ID: 16129550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of implicit solvent models for the simulation of protein-surface interactions.
    Sun Y; Latour RA
    J Comput Chem; 2006 Dec; 27(16):1908-22. PubMed ID: 17019723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.