These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17489631)

  • 1. The first photoexcitation step of ruthenium-based models for artificial photosynthesis highlighted by resonance Raman spectroscopy.
    Herrmann C; Neugebauer J; Presselt M; Uhlemann U; Schmitt M; Rau S; Popp J; Reiher M
    J Phys Chem B; 2007 May; 111(21):6078-87. PubMed ID: 17489631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast excited-state excitation dynamics in a quasi-two-dimensional light-harvesting antenna based on ruthenium(II) and palladium(II) chromophores.
    Dietzek B; Kiefer W; Blumhoff J; Böttcher L; Rau S; Walther D; Uhlemann U; Schmitt M; Popp J
    Chemistry; 2006 Jun; 12(19):5105-15. PubMed ID: 16628758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of regioselective substituted tetrapyridophenazine ligands and their Ru(II) complexes.
    Karnahl M; Tschierlei S; Kuhnt C; Dietzek B; Schmitt M; Popp J; Schwalbe M; Krieck S; Görls H; Heinemann FW; Rau S
    Dalton Trans; 2010 Mar; 39(9):2359-70. PubMed ID: 20162210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the resonance Raman spectra and excitation profiles of a monometallic ruthenium(II) [Ru(bpy)2(HAT)]2+ complex by time-dependent density functional theory.
    Guthmuller J; Champagne B; Moucheron C; Kirsch-De Mesmaeker A
    J Phys Chem B; 2010 Jan; 114(1):511-20. PubMed ID: 19839617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine-unusual building blocks for the synthesis of photochemical molecular devices.
    Schwalbe M; Karnahl M; Görls H; Chartrand D; Laverdiere F; Hanan GS; Tschierlei S; Dietzek B; Schmitt M; Popp J; Vos JG; Rau S
    Dalton Trans; 2009 May; (20):4012-22. PubMed ID: 19440601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined theoretical and experimental deep-UV resonance raman studies of substituted pyrenes.
    Neugebauer J; Baerends EJ; Efremov EV; Ariese F; Gooijer C
    J Phys Chem A; 2005 Mar; 109(10):2100-6. PubMed ID: 16838980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the resonance Raman intensities of a ruthenium-palladium photocatalyst by time dependent density functional theory.
    Guthmuller J; González L
    Phys Chem Chem Phys; 2010 Nov; 12(44):14812-21. PubMed ID: 20949212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study.
    Kupfer S; Guthmuller J; Wächtler M; Losse S; Rau S; Dietzek B; Popp J; González L
    Phys Chem Chem Phys; 2011 Sep; 13(34):15580-8. PubMed ID: 21789326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst.
    Tschierlei S; Presselt M; Kuhnt C; Yartsev A; Pascher T; Sundström V; Karnahl M; Schwalbe M; Schäfer B; Rau S; Schmitt M; Dietzek B; Popp J
    Chemistry; 2009 Aug; 15(31):7678-88. PubMed ID: 19557776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents.
    Guthmuller J; Champagne B
    J Chem Phys; 2007 Oct; 127(16):164507. PubMed ID: 17979360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies and structures of trans-ruthenium(II) and ruthenium(III) bis(cyanide) complexes supported by a tetradentate macrocyclic tertiary amine ligand.
    Wong CY; Lee FW; Che CM; Cheng YF; Phillips DL; Zhu N
    Inorg Chem; 2008 Nov; 47(22):10308-16. PubMed ID: 18850698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory.
    Jensen L; Schatz GC
    J Phys Chem A; 2006 May; 110(18):5973-7. PubMed ID: 16671663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules.
    Hung ST; Wang CH; Kelley AM
    J Chem Phys; 2005 Oct; 123(14):144503. PubMed ID: 16238403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction.
    Liu S; Zhao X; Li Y; Zhao X; Chen M
    J Chem Phys; 2009 Jun; 130(23):234509. PubMed ID: 19548741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent density functional calculations on the electronic spectra of the neutral nickel complex [Ni(LISQ)2] (LISQ = 3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-)) and its monoanion and dication.
    Bachler V
    J Comput Chem; 2009 Oct; 30(13):2087-98. PubMed ID: 19229945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The very covalent diammino(o-benzoquinonediimine) dichlororuthenium(II). An example of very strong pi-back-donation.
    Rusanova J; Rusanov E; Gorelsky SI; Christendat D; Popescu R; Farah AA; Beaulac R; Reber C; Lever AB
    Inorg Chem; 2006 Aug; 45(16):6246-62. PubMed ID: 16878934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of symmetric and asymmetric normal coordinates to the intervalence electronic absorption and resonance Raman spectra of a strongly coupled p-phenylenediamine radical cation.
    Bailey SE; Zink JI; Nelsen SF
    J Am Chem Soc; 2003 May; 125(19):5939-47. PubMed ID: 12733934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives.
    Jensen L; Zhao LL; Autschbach J; Schatz GC
    J Chem Phys; 2005 Nov; 123(17):174110. PubMed ID: 16375520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.