These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1749004)

  • 1. Effects of acidosis and ATP depletion on cardiac muscle electron transfer complex I.
    Rouslin W
    J Mol Cell Cardiol; 1991 Oct; 23(10):1127-35. PubMed ID: 1749004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts.
    Rouslin W
    J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired function of mitochondrial electron transfer complex I in canine myocardial ischemia: loss of flavin mononucleotide.
    Rouslin W; Ranganathan S
    J Mol Cell Cardiol; 1983 Aug; 15(8):537-42. PubMed ID: 6231381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle.
    Rouslin W; Erickson JL; Solaro RJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia.
    Rouslin W; Millard RW
    Am J Physiol; 1981 Feb; 240(2):H308-13. PubMed ID: 6451185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts.
    Rouslin W; Broge CW
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C209-16. PubMed ID: 8430769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase.
    Rouslin W
    Adv Exp Med Biol; 1986; 194():355-73. PubMed ID: 2944359
    [No Abstract]   [Full Text] [Related]  

  • 10. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of energy production in cardiac muscle: effects of ischemia in acidosis.
    Williamson JR; Steenbergen C; Deleeuw G; Barlow C
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():521-31. PubMed ID: 22905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the mitochondrial adenosine 5'-triphosphatase in situ during ischemia and in vitro in intact and sonicated mitochondria from slow and fast heart-rate hearts.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1990 Jul; 280(1):103-11. PubMed ID: 2141243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of energization of complex I in membrane particles from Paracoccus denitrificans and bovine heart mitochondria.
    Kotlyar AB; Albracht SP; van Spanning RJ
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):53-9. PubMed ID: 9693721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for three separate electron flow pathways through Complex I: an inhibitor study.
    Anderson WM; Trgovcich-Zacok D
    Biochim Biophys Acta; 1995 Jun; 1230(3):186-93. PubMed ID: 7619835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of mitochondrial competence during myocardial autolysis.
    Rouslin W
    Am J Physiol; 1987 May; 252(5 Pt 2):H985-9. PubMed ID: 3578546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.