BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17490470)

  • 1. A kinematic analysis of a haptic handheld stylus in a virtual environment: a study in healthy subjects.
    Broeren J; Sunnerhagen KS; Rydmark M
    J Neuroeng Rehabil; 2007 May; 4():13. PubMed ID: 17490470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm.
    Dvorkin AY; Shahar M; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):133-6. PubMed ID: 16640465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.
    Kaber D; Tupler LA; Clamann M; Gil GH; Zhu B; Swangnetr M; Jeon W; Zhang Y; Qin X; Ma W; Lee YS
    Assist Technol; 2014; 26(1):51-60. PubMed ID: 24800454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.
    Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF
    Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral indications of object-presence in haptic virtual environments.
    Reiner M; Hecht D
    Cyberpsychol Behav; 2009 Apr; 12(2):183-6. PubMed ID: 19132912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The assessment of stability and reliability of a virtual reality-based intravenous injection simulator.
    Tsai WW; Fung CP; Tsai SL; Jeng MC; Doong JL
    Comput Inform Nurs; 2008; 26(4):221-6. PubMed ID: 18600130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke.
    Broeren J; Rydmark M; Björkdahl A; Sunnerhagen KS
    Neurorehabil Neural Repair; 2007; 21(2):180-9. PubMed ID: 17312093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke.
    Liebermann DG; Berman S; Weiss PL; Levin MF
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):778-87. PubMed ID: 22907972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic Communication in Collaborative Virtual Environments.
    Wang J; Chellali A; Cao CG
    Hum Factors; 2016 May; 58(3):496-508. PubMed ID: 26715689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory and motor skill testing in neurosurgery applicants: a pilot study using a virtual reality haptic neurosurgical simulator.
    Roitberg B; Banerjee P; Luciano C; Matulyauskas M; Rizzi S; Kania P; Gasco J
    Neurosurgery; 2013 Oct; 73 Suppl 1():116-21. PubMed ID: 24051874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The feasibility of using haptic devices to engage people with chronic traumatic brain injury in virtual 3D functional tasks.
    Gerber LH; Narber CG; Vishnoi N; Johnson SL; Chan L; Duric Z
    J Neuroeng Rehabil; 2014 Aug; 11():117. PubMed ID: 25103113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Documenting a learning curve and test-retest reliability of two tasks on a virtual reality training simulator in laparoscopic surgery.
    Hogle NJ; Briggs WM; Fowler DL
    J Surg Educ; 2007; 64(6):424-30. PubMed ID: 18063281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the third dimension in virtual training environments for neurologically impaired persons: beneficial or disruptive?
    van den Hoogen W; Feys P; Lamers I; Coninx K; Notelaers S; Kerkhofs L; Ijsselsteijn W
    J Neuroeng Rehabil; 2012 Oct; 9():73. PubMed ID: 23036010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.
    Fang TY; Wang PC; Liu CH; Su MC; Yeh SC
    Comput Methods Programs Biomed; 2014 Feb; 113(2):674-81. PubMed ID: 24280627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study.
    Broeren J; Rydmark M; Sunnerhagen KS
    Arch Phys Med Rehabil; 2004 Aug; 85(8):1247-50. PubMed ID: 15295748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.