BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17490987)

  • 1. Retrospective analysis of haplotype-based case control studies under a flexible model for gene environment association.
    Chen YH; Chatterjee N; Carroll RJ
    Biostatistics; 2008 Jan; 9(1):81-99. PubMed ID: 17490987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of case-control studies of genetic and environmental factors with missing genetic information and haplotype-phase ambiguity.
    Spinka C; Carroll RJ; Chatterjee N
    Genet Epidemiol; 2005 Sep; 29(2):108-27. PubMed ID: 16080203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haplotype-based association analysis in cohort and nested case-control studies.
    Chen J; Chatterjee N
    Biometrics; 2006 Mar; 62(1):28-35. PubMed ID: 16542226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haplotype-based regression analysis and inference of case-control studies with unphased genotypes and measurement errors in environmental exposures.
    Lobach I; Carroll RJ; Spinka C; Gail MH; Chatterjee N
    Biometrics; 2008 Sep; 64(3):673-684. PubMed ID: 18047538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analysis for haplotype-based matched case-control studies.
    Zhang H; Zheng G; Li Z
    Biometrics; 2006 Dec; 62(4):1124-31. PubMed ID: 17156287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotype-based association mapping of complex diseases: gene-environment interactions with multiple genetic markers and measurement error in environmental exposures.
    Lobach I; Fan R; Carroll RJ
    Genet Epidemiol; 2010 Dec; 34(8):792-802. PubMed ID: 21031455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference on haplotype effects in case-control studies using unphased genotype data.
    Epstein MP; Satten GA
    Am J Hum Genet; 2003 Dec; 73(6):1316-29. PubMed ID: 14631556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions.
    Chatterjee N; Kalaylioglu Z; Moslehi R; Peters U; Wacholder S
    Am J Hum Genet; 2006 Dec; 79(6):1002-16. PubMed ID: 17186459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
    Lilla C; Verla-Tebit E; Risch A; Jäger B; Hoffmeister M; Brenner H; Chang-Claude J
    Cancer Epidemiol Biomarkers Prev; 2006 Jan; 15(1):99-107. PubMed ID: 16434594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma.
    Mahid SS; Colliver DW; Crawford NP; Martini BD; Doll MA; Hein DW; Cobbs GA; Petras RE; Galandiuk S
    BMC Med Genet; 2007 May; 8():28. PubMed ID: 17537267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.
    Morris AP
    Genet Epidemiol; 2005 Sep; 29(2):91-107. PubMed ID: 15940704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different haplotype-based association methods for gene-environment (GxE) interactions in case-control studies when haplotype-phase is ambiguous.
    Hein R; Beckmann L; Chang-Claude J
    Hum Hered; 2009; 68(4):252-67. PubMed ID: 19622892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques.
    Kraft P; Cox DG; Paynter RA; Hunter D; De Vivo I
    Genet Epidemiol; 2005 Apr; 28(3):261-72. PubMed ID: 15637718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma.
    Moslehi R; Chatterjee N; Church TR; Chen J; Yeager M; Weissfeld J; Hein DW; Hayes RB
    Pharmacogenomics; 2006 Sep; 7(6):819-29. PubMed ID: 16981843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple methods for assessing haplotype-environment interactions in case-only and case-control studies.
    Kwee LC; Epstein MP; Manatunga AK; Duncan R; Allen AS; Satten GA
    Genet Epidemiol; 2007 Jan; 31(1):75-90. PubMed ID: 17123302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient semiparametric estimation of haplotype-disease associations in case-cohort and nested case-control studies.
    Zeng D; Lin DY; Avery CL; North KE; Bray MS
    Biostatistics; 2006 Jul; 7(3):486-502. PubMed ID: 16500923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple estimates of haplotype relative risks in case-control data.
    French B; Lumley T; Monks SA; Rice KM; Hindorff LA; Reiner AP; Psaty BM
    Genet Epidemiol; 2006 Sep; 30(6):485-94. PubMed ID: 16755519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of prospective and retrospective methods for haplotype inference in case-control studies.
    Satten GA; Epstein MP
    Genet Epidemiol; 2004 Nov; 27(3):192-201. PubMed ID: 15372619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of misclassification in genotype-exposure interaction studies: example of N-acetyltransferase 2 (NAT2), smoking, and bladder cancer.
    Deitz AC; Rothman N; Rebbeck TR; Hayes RB; Chow WH; Zheng W; Hein DW; García-Closas M
    Cancer Epidemiol Biomarkers Prev; 2004 Sep; 13(9):1543-6. PubMed ID: 15342459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical methods for haplotype-based matched case-control association studies.
    Zhang H; Zhang H; Li Z; Zheng G
    Genet Epidemiol; 2007 May; 31(4):316-26. PubMed ID: 17285622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.