These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. How to produce a pulsatile flow with low haemolysis? Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li I J Med Eng Technol; 2000; 24(5):227-9. PubMed ID: 11204246 [TBL] [Abstract][Full Text] [Related]
5. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246 [TBL] [Abstract][Full Text] [Related]
6. A pulsatile control algorithm of continuous-flow pump for heart recovery. Gao B; Chang Y; Gu K; Zeng Y; Liu Y ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238 [TBL] [Abstract][Full Text] [Related]
7. Effect of pressure-flow relationship of centrifugal pump on in vivo hemodynamics: a consideration for design. Tagusari O; Yamazaki K; Litwak P; Antaki JF; Watach M; Gordon LM; Kono K; Mori T; Koyanagi H; Griffith BP; Kormos RL Artif Organs; 1998 May; 22(5):399-404. PubMed ID: 9609348 [TBL] [Abstract][Full Text] [Related]
8. Pulsatile blood flow from impeller pump: a dream has come true. Qian KX J Biomater Appl; 1994 Oct; 9(2):158-77. PubMed ID: 7782998 [TBL] [Abstract][Full Text] [Related]
10. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [TBL] [Abstract][Full Text] [Related]
11. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach. Stevens MC; Wilson S; Bradley A; Fraser J; Timms D Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848 [TBL] [Abstract][Full Text] [Related]
12. Exercise studies in patients with rotary blood pumps: cause, effects, and implications for starling-like control of changes in pump flow. Salamonsen RF; Pellegrino V; Fraser JF; Hayes K; Timms D; Lovell NH; Hayward C Artif Organs; 2013 Aug; 37(8):695-703. PubMed ID: 23638682 [TBL] [Abstract][Full Text] [Related]
13. Speed Modulation of the HeartWare HVAD to Assess In Vitro Hemocompatibility of Pulsatile and Continuous Flow Regimes in a Rotary Blood Pump. Horobin JT; Simmonds MJ; Nandakumar D; Gregory SD; Tansley G; Pauls JP; Girnghuber A; Balletti N; Fraser JF Artif Organs; 2018 Sep; 42(9):879-890. PubMed ID: 29726019 [TBL] [Abstract][Full Text] [Related]
15. Development of a miniature intraventricular axial flow blood pump. Yamazaki K; Umezu M; Koyanagi H; Outa E; Ogino S; Otake Y; Shiozaki H; Fujimoto T; Tagusari O; Kitamura M ASAIO J; 1993; 39(3):M224-30. PubMed ID: 8268533 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. Vandenberghe S; Segers P; Antaki JF; Meyns B; Verdonck PR ASAIO J; 2005; 51(6):711-8. PubMed ID: 16340355 [TBL] [Abstract][Full Text] [Related]
17. In vitro evaluation of a pulsatile assist device for a centrifugal pump using a new principle. Iwaya F; Igari T; Hoshino S; Hikichi H Artif Organs; 1995 Jul; 19(7):697-700. PubMed ID: 8572977 [TBL] [Abstract][Full Text] [Related]