These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17491644)

  • 1. Design of microlenses with long focal depth based on the general focal length function.
    Lin J; Liu J; Ye J; Liu S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations.
    Ye JS; Dong BZ; Gu BY; Liu ST
    Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution.
    Di F; Yingbai Y; Guofan J; Minxian W
    Opt Express; 2003 Aug; 11(17):1987-94. PubMed ID: 19466084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution.
    Dong BZ; Liu J; Gu BY; Yang GZ; Wang J
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1465-70. PubMed ID: 11444537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution.
    Mei GA; Ye JS; Zhang Y; Lin J
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1051-7. PubMed ID: 21643390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory.
    Ye JS; Dong BZ; Gu BY; Yang GZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):2030-5. PubMed ID: 12365622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design method for small-f-number microlenses based on a finite thickness model in combination with the Yang-Gu phase-retrieval algorithm.
    Rydberg C; Gu BY; Yang GZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):517-21. PubMed ID: 17206268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):862-9. PubMed ID: 15898545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution.
    Feng D; Ou P; Feng LS; Hu SL; Zhang CX
    Opt Express; 2008 Dec; 16(25):20968-73. PubMed ID: 19065236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of low F-number dual micro-axilens array with binary structures by rigorous electromagnetic theory.
    Feng D; Feng LS; Zhang CX
    Opt Express; 2011 May; 19(11):10959-66. PubMed ID: 21643356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New design model for high efficiency cylindrical diffractive microlenses.
    Li Y; Zhao H; Feng SF; Ye JS; Wang XK; Sun WF; Han P; Zhang Y
    Sci Rep; 2017 Nov; 7(1):16334. PubMed ID: 29180786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low f-Number Diffraction-Limited Pancharatnam-Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers.
    Jiang M; Guo Y; Yu H; Zhou Z; Turiv T; Lavrentovich OD; Wei QH
    Adv Mater; 2019 May; 31(18):e1808028. PubMed ID: 30907480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the chromatic aberration of microlenses.
    Ruffieux P; Scharf T; Herzig HP; Völkel R; Weible KJ
    Opt Express; 2006 May; 14(11):4687-94. PubMed ID: 19516624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achromatic nanostructured gradient index microlenses.
    Buczynski R; Filipkowski A; Piechal B; Nguyen HT; Pysz D; Stepien R; Waddie A; Taghizadeh MR; Klimczak M; Kasztelanic R
    Opt Express; 2019 Apr; 27(7):9588-9600. PubMed ID: 31045108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved first Rayleigh-sommerfeld method for analysis of cylindrical microlenses with small f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    Opt Lett; 2004 Oct; 29(20):2345-7. PubMed ID: 15532262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method.
    Chiu CC; Lee YC
    Opt Express; 2012 Mar; 20(6):5922-35. PubMed ID: 22418468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystal microlenses based on binary surface alignment controlled by focused ion beam treatment.
    Palto SP; Geivandov AR; Kasyanova IV; Simdyankin IV; Artemov VV; Gorkunov MV
    Opt Lett; 2021 Jul; 46(14):3376-3379. PubMed ID: 34264217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position.
    Wang J; Barton JP
    Appl Opt; 2010 Oct; 49(30):5828-36. PubMed ID: 20962947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.