BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 17492099)

  • 1. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections.
    McNamara JP; Sharma R; Vincent MA; Hillier IH; Morgado CA
    Phys Chem Chem Phys; 2008 Jan; 10(1):128-35. PubMed ID: 18075691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.
    Sponer J; Jurecka P; Hobza P
    J Am Chem Soc; 2004 Aug; 126(32):10142-51. PubMed ID: 15303890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity in noncovalent interactions of biologically relevant molecules.
    Antony J; Brüske B; Grimme S
    Phys Chem Chem Phys; 2009 Oct; 11(38):8440-7. PubMed ID: 19774274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations.
    Jurecka P; Cerný J; Hobza P; Salahub DR
    J Comput Chem; 2007 Jan; 28(2):555-69. PubMed ID: 17186489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of nucleic acid base pairs in organic solvents: molecular dynamics, molecular dynamics/quenching, and correlated ab initio study.
    Zendlová L; Hobza P; Kabelác M
    J Phys Chem B; 2007 Mar; 111(10):2591-609. PubMed ID: 17302446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.
    Pitonák M; Neogrády P; Cerný J; Grimme S; Hobza P
    Chemphyschem; 2009 Jan; 10(1):282-9. PubMed ID: 19115327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-covalent interactions in biomacromolecules.
    Cerný J; Hobza P
    Phys Chem Chem Phys; 2007 Oct; 9(39):5291-303. PubMed ID: 17914464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs.
    Jurecka P; Sponer J; Cerný J; Hobza P
    Phys Chem Chem Phys; 2006 May; 8(17):1985-93. PubMed ID: 16633685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the electrostatic interaction between nucleic acid bases.
    Toczyłowski RR; Cybulski SM
    J Chem Phys; 2005 Oct; 123(15):154312. PubMed ID: 16252953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of carbohydrates and amino acids with aromatic systems studied by density functional and semi-empirical molecular orbital calculations with dispersion corrections.
    Sharma R; McNamara JP; Raju RK; Vincent MA; Hillier IH; Morgado CA
    Phys Chem Chem Phys; 2008 May; 10(19):2767-74. PubMed ID: 18464992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Describing weak interactions of biomolecules with dispersion-corrected density functional theory.
    Lin IC; Rothlisberger U
    Phys Chem Chem Phys; 2008 May; 10(19):2730-4. PubMed ID: 18464988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.